
Serialization for Property Graphs

Dominik Tomaszuk1(B) , Renzo Angles2,3 , �Lukasz Szeremeta1 ,
Karol Litman1, and Diego Cisterna3

1 Institute of Informatics, University of Bialystok,
Cio�lkowskiego 1M, 15-245 Bia�lystok, Poland
{d.tomaszuk, l.szeremeta}@uwb.edu.pl

2 Department of Computer Science, Universidad de Talca, Curicó, Chile
rangles@utalca.cl

3 Center for Semantic Web Research, Santiago, Chile
dcisterna@live.com

Abstract. Graph serialization is very important for the development
of graph-oriented applications. In particular, serialization methods are
fundamental in graph data management to support database exchange,
benchmarking of systems, and data visualization. This paper presents
YARS-PG, a data format for serializing property graphs. YARS-PG was
designed to be simple, extensible and platform independent, and to sup-
port all the features provided by the current database systems based on
the property graph data model.

Keywords: Serialization · Property graph · Graph database

1 Introduction

Data serialization is the process of converting data (obtained from a source sys-
tem) into a format that can be stored (in the same system) or transmitted (to a
target system), and reconstructed later. Data serialization methods are applied
in several situations [6,21,27], in particular when an ETL process is required (i.e.
when the data need to be extracted, transformed and loaded). Data serializa-
tion implies the definition of a data format with specific syntax and semantics.
XML and JSON are two popular data formats today [17,33]. In the context
of database management, data serialization is very relevant for several reasons:
it is fundamental to support the interoperability of heterogenous databases; it
allows automatic data processing; it facilitates database benchmarking as the
same data can be shared among systems; it facilitates the translation to other
data formats; it results in a simple backup method; other manipulation and
visualization tools can read the data.

In the last years, the massive generation of large amounts of graph data has
motivated the development of graph-oriented database system, most of them
designed to support property graphs (i.e. labeled directed graphs where nodes
and edges can have label-value properties) [11,24,31]. Although these systems
c© Springer Nature Switzerland AG 2019
S. Kozielski et al. (Eds.): BDAS 2019, CCIS 1018, pp. 57–69, 2019.
https://doi.org/10.1007/978-3-030-19093-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19093-4_5&domain=pdf
http://orcid.org/0000-0003-1806-067X
http://orcid.org/0000-0002-6740-9711
http://orcid.org/0000-0002-6635-0623
https://doi.org/10.1007/978-3-030-19093-4_5

58 D. Tomaszuk et al.

are very similar, they show variations in the implementation of the features
presented by the property graph data model (as we will show in this paper).

The lack of a unique property graph data model directly influences the devel-
opment of other components, including query languages and serialization for-
mats. Although there are some graph data formats available (like GraphML or
DotML), there is no a standard one, and none of them is able to cover all the
features presented by the property graph data model.

In this paper we introduce YARS-PG, a data format to serialize property
graphs. YARS-PG was designed to satisfy functional and non functional require-
ments. The functional requirements are related to the intrinsic features of the
property graph data model. In this sense, YARS-PG is able to serialize property
graphs containing multi-labeled nodes, multi-labeled edges, directed and undi-
rected edges, mono-value and multi-value properties, and null values.

In terms of non functional requirements, we considered expressiveness, con-
ciseness and readability. Expressiveness implies the types of objects and rela-
tionships that a serialization is able to express (i.e. data models). In this sense,
YARS-PG allows to encode all the features presented by the property graph
model. Conciseness is related to the number of extra syntactic elements used by
the serialization. Note that such extra elements are required to parse the data in
the right way. In this sense, YARS-PG provides a simple syntax with a reduced
number of extra characters. Readability concerns the facilities to encode the
structure of the data. In this case, YARS-PG is inspired on the syntax used by
popular graph query languages (e.g. Cypher and Gremlin) to encode the struc-
ture of a property graph (i.e. nodes, edges and properties).

This article is organized as follow. First, we present a review of current graph
database systems, selecting those oriented to support property graphs (Sect. 2).
Next, we present a formal definition of the property graph data model, in such
a way that it is general enough to cover all the data modeling features provided
by a property graph (Subsect. 3.1). Such definition was used to compare cur-
rent database systems (Subsect. 3.2). Next, we propose YARS-PG as a general
and flexible format to serialize property graphs (Sect. 4). We present the syntax
of the format and provide a comparison with other graph-oriented serialization
formats (Sect. 5).

2 Review of Current Graph Database Systems

The current market of graph databases includes over 30 systems1, most of which
are designed to store and query property graphs. Table 1 shows a representative
group of systems supporting property graphs. Some systems were not included
for different reasons. We discard systems abandoned or no longer available, e.g.
FlockDB, and GlobalsDB. We remove systems not supporting property graphs,
e.g. HyperGraphDB, Graph Engine, Sqrrl, FaunaDB, and GRAKN.AI. We also
discard systems focused on RDF (including Dgraph, GraphDB, Blazegraph, and
Stardog). Other proposals are not strictly database systems, e.g. Giraph that is
a graph processing framework, and HGraphDB that is an abstract layer.
1 https://db-engines.com/en/ranking/graph+dbms.

https://db-engines.com/en/ranking/graph+dbms

Serialization for Property Graphs 59

Table 1 shows general information about the selected graph database systems.
Specifically, we annotated the system’s name, license types, the programming
language that the system was implemented with, supported data models, and
existence of a query language. We found that the systems allow four types of
licenses: GNU GPL, Apache, GNU Affero General Public License (GNU AGPL)2

and Commercial. Most systems provide a commercial version, and some of them
provide an open source version. The most preferred programming language for
system implementation is Java, followed by C++, C, Scala and C#. Although the
selected systems are based on a graph-based data model, we found that other
abstractions are also supported (i.e. some systems are multi-model). Almost
every system supports a query language. The most commonly used is Gremlin,
followed by openCypher.

Table 1. General information about graph databases

System License Prog.
language

Data
model

Query lang.

G
N

U
G

P
L

A
p
a
ch

e

G
N

U
A

G
P

L

C
o
m

m
er

ci
a
l

C
/

C
+

+

J
av

a
/

S
ca

la

C
#

G
ra

p
h

R
el

a
ti

o
n
a
l

O
b
je

ct

D
o
cu

m
en

t

C
o
lu

m
n

K
ey

-v
a
lu

e
Neo4j • • • • •
Datastax • • • • •
OrientDB • • • • • • • •
ArangoDB • • • • • • •
JanusGraph • • • • •
Neptune • • •
TigerGraph • • • • •
InfiniteGraph • • •
InfoGrid • • •
Sparksee • • •
Memgraph • • •
VelocityDB • • • • •
AgenGraph • • • • • •
TinkerGraph • • • •
HGraphDB • • • •

3 The Property Graph Data Model

In the most general sense, a property graph is a directed labelled multigraph
with the special characteristic that each node or edge could maintain a set of
2 GNU AGPL is a free license based on the GNU GPL and it is considered for any

software that will commonly be run over a network.

60 D. Tomaszuk et al.

property-value pairs. The primary components of a property graph are nodes,
edges and properties. The secondary components are labels (for nodes, edges
and properties) and data types for property values.

The notion of property graph was introduced by Rodriguez and Neubauer
in [26]. It is possible to find variations in the basic definition [2,7,12,30], most
of them related to the support for multiple labels for nodes and edges, or the
occurrence of multivalue properties. In this section we provide a general defi-
nition which allows to exploit all the features of the property graph structure.
Such definition is used to analyze the features covered by current graph databases
systems.

3.1 Formal Definition of a Property Graph

Assume that L is an infinite set of labels (for nodes, edges and properties), and
V is an infinite set of values (atomic or complex). Given a set S, we assume that
P(S) is the power set of S, i.e. the set of all subsets of S, including the empty
set ∅ and S itself.

Definition 1. A property graph is a tuple G = (N,E, P, δ, λ, ρ, σ) where:

1. N is a finite set of nodes (also called vertices), E is a finite set of edges, and
P is a finite set of properties, satisfying that N ∩ E ∩ P = ∅;

2. δ : E → (N × N) is a total function that associates each edge in E with a
pair of nodes in N (i.e., δ is the usual incidence function in graph theory);

3. λ : (N ∪E) → P(L) is a total function that associates a node/edge with a set
of labels from L (i.e., λ is a labeling function for nodes and edges);

4. ρ : P → (L × V) is a total function that associates each property with a pair
label-value;

5. σ : (N ∪E) → P(P) is a total function that associates each node or edge with
a set of properties, satisfying that σ(o1) ∩ σ(o2) = ∅ for each pair of distinct
objects o1, o2 in the domain of σ.

According to the above definition: N , E and P have no elements in common;
given an edge e such that δ(e) = (n1, n2), we will say that n1 and n2 are the
“source node” and the “target node” of e respectively, i.e. the edges are directed;
nodes and edges could have zero or more labels; each property has a single label
and a single value (although it could be complex); nodes and edges could have
zero or many properties, and each property belongs to a unique node or edge.

Figure 1 shows a graphical representation of a property graph. Following our
formal definition, the example property graph will be described as follows:

N = {n1, n2, n3, n4, n5, n6}
E = {e1, e2, e3, e4, e5, e6}
P = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12,

p13, p14, p15, p16, p17, p18, p19, p20, p21, p22}
λ(n1) = {Author}, σ(n1) = {p1, p2}, ρ(p1) = (fname,“John”),
ρ(p2) = (lname,“Smith”)
λ(n2) = {Author}, σ(n2) = {p3, p4}, ρ(p3) = (fname,“Alice”),

Serialization for Property Graphs 61

Fig. 1. Example of property graph representing bibliographic information

ρ(p4) = (lname,“Brown”)
λ(n3) = {Entry,InProceedings}, σ(n3) = {p5, p6, p7}, ρ(p6) = (numpages,10),
ρ(p5) = (title,“Serialization for...”), ρ(p7) = (keyword,“Graph database”),
λ(n4) = {Entry, Article}, σ(n4) = {p8, p9, p10, p11},
ρ(p8) = (title,“Property Graph...”), ρ(p9) = (numpages,10),
ρ(p10) = (keyword,“Query”), ρ(p11) = (keyword,“Graph”),
λ(n5) = {Proceedings}, σ(n5) = {p12, p13, p14}, ρ(p12) = (title,“BDAS”),
ρ(p13) = (year,2018), ρ(p14) = (month,“May”)
λ(n6) = {Journal}, σ(n6) = {p15, p16, p17}, ρ(p15) = (title,“J. DB”),
ρ(p16) = (year,2020), ρ(p17) = (vol,30)
δ(e1) = (n3, n1), λ(e1) = {has author}, σ(e1) = {p18}, ρ(p18) = (order,1)
δ(e2) = (n3, n2), λ(e2) = {has author}, σ(e2) = {p19}, ρ(p19) = (order,2)
δ(e3) = (n4, n2), λ(e3) = {has author}, σ(e3) = {p20}, ρ(p20) = (order,1)
δ(e4) = (n4, n3), λ(e4) = {cites}
δ(e5) = (n3, n5), λ(e5) = {booktitle}, σ(e5) = {p21},
ρ(p21) = (pages,“111–121”)
δ(e6) = (n4, n6), λ(e6) = {published in}, σ(e6) = {p22},
ρ(p22) = (pages,“222–232”)

3.2 Features of Current Property Graph Database Systems

Given the graph database systems presented in Sect. 2, we analyze their support
for the features of the property graph data model presented above. Table 2 shows
the results of our evaluation and are discussed below. We will use “some” to
denote that a feature is covered by less than 50% of the systems, and “most”
otherwise.

Node/Edge Labels. All the systems support labels for nodes and edges (zero,
one or more). Some systems support nodes without labels, but unlabeled edges
are not supported. Some systems support multiple labels for nodes, and just one
system for allow many labels for edges.

62 D. Tomaszuk et al.

Table 2. Property graph features supported by graph database systems.

System Node
labels

Edge
labels

Edges Properties

Z
er

o

O
n
e

M
a
n
y

Z
er

o

O
n
e

M
a
n
y

D
ir

ec
te

d

U
n
d
ir

ec
te

d

M
u
lt

ip
le

D
u
p
li
ca

te
d

M
o
n
o
-v

a
lu

e

M
u
lt

i-
va

lu
e

N
u
ll

va
lu

e

D
u
p
li
ca

te
s

Neo4j • • • • • • •
Datastax • • • • • •
OrientDB • • • • • • • •
ArangoDB • • • • • • • •
JanusGraph • • • • • • • •
Amazon Neptune • • • • • • •
TigerGraph • • • • • •
InfiniteGraph • • • • • • • •
InfoGrid • • • • • • •
Sparksee • • • • • • • •
Memgraph • • • • • • • •
VelocityDB • • • • • • • •
AgensGraph • • • • • • • •
TinkerGraph • • • • • •
HGraphDB • • • • • • •

Edges. All the systems support directed edges. More than a half of the systems
allow undirected edges in an explicit way (recall that an undirected edge can
be simulated with two directed edges, but the opposite is not possible). Prac-
tically all the systems allow multiple edges between a pair of nodes (i.e. they
support multigraphs), and such edges could have the same label (i.e. the edges
are independent of the labels).

Properties. A property is a pair p = (l, v) where l is the property label (or
property name) and v is the property value. A property have a single and unique
label. Most systems support multivalue properties (e.g. emails for a person),
a feature supported in two possible ways: properties with the same label, or
properties with complex values (e.g. an array of strings). More than a half of
the systems allow the null value to support the explicit description of an empty
property3. The notion of duplicate property is not supported by current systems.

3 This feature must not be confused with the null values allowed in the query language
provided by the system.

Serialization for Property Graphs 63

4 YARS-PG Serialization

In this section we describe YARS-PG, a serialization for property graphs inspired
in a serialization for RDF data called YARS [29] (we compare them in Sub-
sect. 5.1). A YARS-PG serialization contains node declarations and relationship
declaration (no order is required for them).

A node declaration begins with the object identifier (OID) of the node, fol-
lowed by a list of node labels (inside squared brackets), a colon, and the proper-
ties of the node (inside braces). A relationship declaration contains the OID of
the source node (inside parenthesis), a set of labels, a set of properties, and the
OID of the target node. Relationships can be directed (->) or undirected (-).
A relationship declaration is based on paths, following the syntax used in graph
query languages like PGQL [25], Cypher [22] and G-CORE [3]. YARS-PG allows
cyclic relationships and multiple relationships between the same pair of nodes.

A property is represented as a pair p : v, where p is the property label and v
the property value. A property value could be atomic (e.g. string, integer, float,
null, true, false) or complex (i.e. a list of atomic values).

The following example presents YARS-PG that is also showed in Fig. 1. The
example presents a graphical representation of a property graph that contains
bibliographic information. The node declarations are shown in lines 1–8. The
relationship declarations are shown in lines 9–15.

1 Author01[Author]:{fname:"John",lname:"Smith"}
2 Author02[Author]:{fname:"Alice",lname:"Brown"}
3 EI01[Entry:InProc]:{title:"Serialization for...",
4 numpages:10,keyword:"Graph database"}
5 EA01[Entry:Article]:{title:"Property Graph...",
6 numpages:10,keyword:["Query", "Graph"]}
7 Proc01[Proceedings]:{title:"BDAS",year:2018,month:"May"}
8 Jour01[Journal]:{title:"J. DB",year:2020,vol:30}
9

10 (EI01)-[has_author {order:1}]->(Author01)
11 (EI01)-[has_author {order:2}]->(Author02)
12 (EA01)-[has_author {order:1}]->(Author02)
13 (EA01)-[cites]->(EI01)
14 (EI01)-[booktitle {pages:"111-121"}]->(Proc01)
15 (EA01)-[published_in {pages:"222-232"}]->(Jour01)

The main railroad diagram of a node definition is presented in Fig. 2. A node
declaration beginswith identifier (ido). The next part is a node label (node label)
nested in square brackets. Node properties (prop) are located in curly brackets. A
parse tree of first two nodes are presented in Fig. 3. It has interior and leaf nodes.
Interior nodes (e.g. key, value) are non-terminal symbols. Leaf nodes (e.g. Author,
fname) are terminal symbols.

The main railroad diagram of a relationship declaration is presented in Fig. 4.
A relationship declaration begins with first identifier (ido) nested in round brack-
ets. The next part is a relationship label (relationship label) with relationship

64 D. Tomaszuk et al.

Fig. 2. Railroad diagram of a node declaration

Fig. 3. Parse tree fragment of first two lines in example

Fig. 4. Railroad diagram of directed relationship declaration

properties (prop). Properties begins and ends with curly brackets. The last ele-
ment is the second identifier (ido) nested in round brackets.

The entire YARS-PG grammar in ANTLR 4 [23] and also in EBNF notation4

has been made available in the GitHub repository [28]. We prepare three different
parsers of YARS-PG in Java [19], Python [20], and C# [18].

5 Related Work

5.1 YARS-PG Versus YARS

YARS-PG is based on YARS [29], a concise RDF serialization proposed to facil-
itate data exchange between RDF and property graph databases.

The following example presents a YARS serialization.

1 :rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 (a {value:<http://example.org/p#j>})
3 (b {value:<http://xmlns.com/foaf/0.1/Person>})
4 (a)-[:rdf:type]->(b)

4 https://www.w3.org/TR/REC-xml/#sec-notation.

https://www.w3.org/TR/REC-xml/#sec-notation

Serialization for Property Graphs 65

YARS-PG and YARS are textual and path-based. There are three main dif-
ferences between YARS and YARS-PG. The first difference is the abandonment
of support for RDF prefixes (line 1 and line 4) because this abbreviations are
not useful for property graphs. The next one is the abandonment of support
for URI datatypes between the < and > characters (line 2 and line 3) because
property graphs do not have a special datatype for such references. The last
change concerns handling of properties in edges, which were not provided by the
mapping algorithm from RDF to YARS.

5.2 Graph Serialization Formats

In the property graphs field there are a few solutions for serializing graphs. It
may be divided into four groups: formats that use XML, formats that use JSON,
tabular-based serializations and text-based ones. Table 3 presents supporting
details of those serializations, namely: key-value pair support, multi-values sup-
port, support of null as a special marker, node multi-labels support, unique label
support, directed edges support, undirected edges support, multi-edges with the
same label support, unstructured data support, and supported types of formats
i.e. XML, JSON, textual, tabular.

The first group can be distinguished to GEXF [14], GraphML [9], DotML5,
DGML6 and GXL [16,32]. Graph Exchange XML Format (GEXF) is syntax for
describing complex networks structures, such as network nodes and edges, prop-
erties, hierarchies, and their associated data. It is dedicated for Gephi, which
is network analysis and visualization software. Unfortunately, GEXF does not
support multi-labels in nodes. Another serialization is GraphML. It supports
properties for nodes and edges, hierarchical graphs, sub-graphs, and hyperedges.
The advantage of this format is that it is widely adopted. However, the disad-
vantage, as in GEXF, is the lack of support for multi-labels and no grammar for
a null value.

Another XML-based serialization is Dot Markup Language (DotML). This
format is based on GraphViz DOT [10]. The disadvantage of this serialization
is the lack of support for properties. Yet another syntax is Directed Graph
Markup Language (DGML). This format supports cyclical and acyclic directed
graphs. Unfortunately, DGML does not cope with most of the features con-
sidered in Table 3. The last XML-based format is Graph Exchange Language
(GXL). It focuses on data interoperability between reverse engineering tools such
as parsers, analyzers and visualizers. In its syntax, it is similar to GraphML and
also has its disadvantages e.g. lack of support for multi-labels.

The second group are JSON-based serializations like GraphSON TinkerPop 27

and GraphSON TinkerPop 38. GraphSON is a part of TinkerPop – the open source
5 http://www.martin-loetzsch.de/DOTML/.
6 https://docs.microsoft.com/en-us/visualstudio/modeling/directed-graph-markup-

language-dgml-reference.
7 https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-

Library.
8 http://tinkerpop.apache.org/docs/current/reference/#graphson-reader-writer.

http://www.martin-loetzsch.de/DOTML/
https://docs.microsoft.com/en-us/visualstudio/modeling/directed-graph-markup-language-dgml-reference
https://docs.microsoft.com/en-us/visualstudio/modeling/directed-graph-markup-language-dgml-reference
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library
http://tinkerpop.apache.org/docs/current/reference/#graphson-reader-writer

66 D. Tomaszuk et al.

Table 3. Comparison of property graph serializations

System Properties Labels Edges Format

P
a
ir

s

M
u
lt

ip
le

N
u
ll

va
lu

e

M
u
lt

ip
le

U
n
iq

u
e

D
ir

ec
te

d

U
n
d
ir

ec
te

d

M
u
lt

ip
le

S
a
m

e
la

b
el

U
n
st

ru
ct

u
re

d

X
M

L

J
S
O

N

T
ex

tu
a
l

T
a
b
u
la

r

GEXF • • • • • • •
GDF ◦� • • ◦� •
GML • ◦� • ◦� • •
GraphML • ◦ •� • • • • •
Pajek NET • • • • •
GraphViz DOT • ◦ ◦� • • • • • •
UCINET DL • • • • • • •
Tulip TPL • • •
Netdraw VNA • ◦� • • • • •
DotML • • • • • •
S-Dot • • • • • •
GraphSON TP2 • • • • • •
GraphSON TP3 • ◦ • • • • • • •
DGML • • • • •
GXL • ◦ •� • • • • •
YARS-PG • • • • ◦ • • • • • •

� no grammar
� only global definition
� labels supported as properties
� only in the sense of identifiers

graph computing framework, which has its implementations for many databases.
The third version of serialization, in contrast to GraphSON TinkerPop 2 supports
multiple labels for nodes. However, these labels must be unique. GraphSON Tin-
kerPop 3 also brings partial support for the possibility of defining several values
for one key. Both versions support properties but do not support undirected edges.
GraphSON TinkerPop 3 is not backward compatible.

There are also a few tabular-based formats including GUESS GDF [1], Pajek
NET [5] and Netdraw VNA9. The first one is based on comma-separated val-
ues (CSV) [13] file format. GDF serialization is known from GUESS tool used
to explore and visualize graphs. Blocks of declaration of vertices and edges are
separated from each other. The format has rather basic capabilities and does
not support properties or multiple values. Another tabular-based serialization is

9 http://www.analytictech.com/Netdraw/NetdrawGuide.doc.

http://www.analytictech.com/Netdraw/NetdrawGuide.doc

Serialization for Property Graphs 67

Pajek NET. Serialization allows multiple labels for nodes and undirected edges,
but unfortunately, does not support properties. Netdraw VNA, unlike the pre-
viously discussed serializations from this group, allows for properties and has
support for multiple edges with the same label. Additionally, labels in nodes
must be unique. In this serialization, similarly to NET Pajek, the values in
columns are separated by spaces. Unfortunately, serialization does not allow for
several values for one key, as well as multiple labels for one node.

The last group is text-based syntaxes. This group includes GML [15],
GraphViz DOT [10], UCINET DL [8], Tulip TLP [4], and S-Dot10. Graph Mod-
elling Language (GML) is a simple structure based on nested key-values lists. The
purpose of the structure was to provide flexibility as a universal format. Unfor-
tunately, GML does not support multi-values. Another serialization is Graphviz
DOT. This syntax is used in various fields. The format allows to collect data,
but also to stylize the graph. The disadvantage of serialization is the lack of
multigraph support. Yet another syntax is UCINET DL. This format based on
matrixes and lists. The disadvantage of this serialization is the inability to use
multi-value. The next syntax is Tulip TLP. This format has structure based on
round brackets. The serialization allows to collect data, but also to stylize the
graph. The last serialization belonging to textual group is S-Dot. This format
is based on GraphViz DOT and on similar serialization DotML. Unfortunately,
this format does not support properties.

Comparing the above serializations to YARS-PG, we can see that almost all
features, listed in Table 3, are supported. The example in Sect. 4 shows key-value
pairs in nodes (e.g. line 1) and in edges (e.g. line 11). This example also presents
directed edges in lines 10–15, and multiple properties in line 6. Our proposal
allows to use the same name of labels but the parser treats it as the same label.

6 Conclusions

This paper presents YARS-PG, a data serialization format for property graphs
which is simple, extensible, and platform independent. YARS-PG supports all
the features allowed by the current database systems based on the property graph
data model, and can be adapted in the future to work with various database
systems, visualization software and other graph-oriented tools.

The future work will focus on providing a binary and a compact version of
this serialization, which will be faster and will make the serialization a good
format for storing and sharing on the Web.

Acknowledgements. This work was supported by the National Science Center,
Poland (NCN) under research grant Miniatura 2 for Dominik Tomaszuk. This pub-
lication has received financial support from the Polish Ministry of Science and Higher
Education under subsidy granted to the University of Bialystok for R&D and related
tasks aimed at development of young scientists for �Lukasz Szeremeta. Renzo Angles is
funded by the Millennium Institute for Foundational Research on Data (Chile).

10 http://martin-loetzsch.de/S-DOT/.

http://martin-loetzsch.de/S-DOT/

68 D. Tomaszuk et al.

References

1. Adar, E.: GUESS: a language and interface for graph exploration. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2006,
pp. 791–800. ACM, New York (2006).https://doi.org/10.1145/1124772.1124889

2. Angles, R., Arenas, M., Barceló, M.A., Hogan, M.A., Reutter, M.A., Vrgoĉ, M.A.:
Foundations of modern query languages for graph databases. CSUR 50(5) (2017).
https://doi.org/10.1145/3104031

3. Angles, R., et al.: A core for future graph query languages. In: Proceedings of
the 2018 International Conference on Management of Data, SIGMOD 2018, pp.
1421–1432. ACM, New York (2018). https://doi.org/10.1145/3183713.3190654

4. Auber, D., et al.: TULIP 5 (2017)
5. Batagelj, V., Mrvar, A.: Pajek— analysis and visualization of large networks. In:

Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 477–478.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4 54

6. Bhatti, N., Hassan, W., McClatchey, R., Martin, P., Kovacs, Z.: Object serialization
and deserialization using XML. Advances in Data Management, vol. 1 (2000)

7. Bonifati, A., Fletcher, G., Voigt, H., Yakovets, N.: Querying graphs. In: Synthesis
Lectures on Data Management. Morgan & Claypool Publishers (2018). https://
doi.org/10.2200/S00873ED1V01Y201808DTM051

8. Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for Windows: software for
social network analysis (2002)

9. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
progress report structural layer proposal. In: Mutzel, P., Jünger, M., Leipert,
S. (eds.) GD 2001. LNCS, vol. 2265, pp. 501–512. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45848-4 59

10. Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.: Graphviz and
dynagraph – static and dynamic graph drawing tools. In: In: Jünger, M., Mutzel,
P. (eds.) Graph Drawing Software. Mathematics and Visualization, pp. 127–148.
Springer, Berlin (2004). https://doi.org/10.1007/978-3-642-18638-7 6

11. Guminska, E., Zawadzka, T.: EvOLAP graph – evolution and OLAP-aware graph
data model. In: Kozielski, S., Mrozek, D., Kasprowski, P., Ma�lysiak-Mrozek, B.,
Kostrzewa, D. (eds.) BDAS 2018. CCIS, vol. 928, pp. 75–89. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99987-6 6

12. Hartig, O.: Reconciliation of RDF* and Property Graphs. Technical reports.
http://arxiv.org/abs/1409.3288 (2014)

13. Hausenblas, M., Wilde, E., Tennison, J.: URI Fragment Identifiers for the text/csv
Media Type. RFC 7111, RFC Editor, January 2014. http://www.rfc-editor.org/
rfc/rfc7111.txt

14. Heymann, S.: Gephi. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Net-
work Analysis and Mining, pp. 612–625. Springer, New York (2014). https://doi.
org/10.1007/978-1-4614-6170-8 299

15. Himsolt, M.: GML: a portable graph file format (1997). http://www.uni-passau.
de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf

16. Holt, R.C., Winter, A., Schürr, A.: GXL: toward a standard exchange format.
In: Proceedings of the Seventh Working Conference on Reverse Engineering, pp.
162–171, November 2000. https://doi.org/10.1109/WCRE.2000.891463

17. Kangasharju, J., Tarkoma, S.: Benefits of alternate xml serialization formats in
scientific computing. In: Proceedings of the Workshop on Service-Oriented Com-
puting Performance: Aspects, Issues, and Approaches, pp. 23–30. ACM, New York
(2007). https://doi.org/10.1145/1272457.1272461

https://doi.org/10.1145/1124772.1124889
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3183713.3190654
https://doi.org/10.1007/3-540-45848-4_54
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/978-3-642-18638-7_6
https://doi.org/10.1007/978-3-319-99987-6_6
http://www.rfc-editor.org/rfc/rfc7111.txt
http://www.rfc-editor.org/rfc/rfc7111.txt
https://doi.org/10.1007/978-1-4614-6170-8_299
https://doi.org/10.1007/978-1-4614-6170-8_299
http://www.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
http://www.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
https://doi.org/10.1109/WCRE.2000.891463
https://doi.org/10.1145/1272457.1272461

Serialization for Property Graphs 69

18. Litman, K.: YARSpg Parser C Sharp 0.3 (GitHub), December 2018. https://doi.
org/10.5281/zenodo.2285046

19. Litman, K.: YARSpg-Parser-Java 0.3 (GitHub), December 2018. https://doi.org/
10.5281/zenodo.2284679

20. Litman, K.: YARSpg Parser Python 0.4 (GitHub), December 2018. https://doi.
org/10.5281/zenodo.2285247

21. Maeda, K.: Comparative survey of object serialization techniques and the program-
ming supports. Int. J. Comput. Inf. Eng. 5(12) (2011)

22. Marton, J., Szárnyas, G., Varró, D.: Formalising openCypher graph queries in
relational algebra. In: Kirikova, M., Nørv̊ag, K., Papadopoulos, G.A. (eds.) ADBIS
2017. LNCS, vol. 10509, pp. 182–196. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66917-5 13

23. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf (2013)
24. P�luciennik, E., Zgorza�lek, K.: The multi-model databases – a review. In: Kozielski,

S., Mrozek, D., Kasprowski, P., Ma�lysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS
2017. CCIS, vol. 716, pp. 141–152. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58274-0 12

25. van Rest, O., Hong, S., Kim, J., Meng, X., Chafi, H.: PGQL: a property graph
query language. In: Proceedings of the Fourth International Workshop on Graph
Data Management Experiences and Systems, GRADES 2016, pp. 1–6. ACM, New
York (2016). https://doi.org/10.1145/2960414.2960421

26. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bull. Am. Soc.
Inf. Sci. Tech. 36(6), 35–41 (2010)

27. Sumaray, A., Makki, S.K.: A comparison of data serialization formats for optimal
efficiency on a mobile platform. In: Proceedings of the 6th International Confer-
ence on Ubiquitous Information Management and Communication, pp. 1–6. ACM
(2012). https://doi.org/10.1145/2184751.2184810

28. Szeremeta, �L.: YARS-PG ANTLR4 grammar (GitHub), February 2019. https://
doi.org/10.5281/zenodo.2555898

29. Tomaszuk, D.: RDF data in property graph model. In: Garoufallou, E., Subirats
Coll, I., Stellato, A., Greenberg, J. (eds.) MTSR 2016. CCIS, vol. 672, pp. 104–115.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49157-8 9

30. Tomaszuk, D., Pak, K.: Reducing vertices in property graphs. PLoS ONE 13(2),
1–25 (2018)

31. Warcha�l, �L.: Using Neo4j graph database in social network analysis. Stud. Infor-
matica 33(2A), 271–279 (2012). https://doi.org/10.21936/si2012 v33.n2A.147

32. Winter, A., Kullbach, B., Riediger, V.: An overview of the GXL graph exchange
language. In: Diehl, S. (ed.) Software Visualization. LNCS, vol. 2269, pp. 324–336.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45875-1 25

33. Yusof, K., Man, M.: Efficiency of JSON for data retrieval in big data. Ind. J. Electr.
Eng. Comput. Sci. 7, 250–262 (2017)

https://doi.org/10.5281/zenodo.2285046
https://doi.org/10.5281/zenodo.2285046
https://doi.org/10.5281/zenodo.2284679
https://doi.org/10.5281/zenodo.2284679
https://doi.org/10.5281/zenodo.2285247
https://doi.org/10.5281/zenodo.2285247
https://doi.org/10.1007/978-3-319-66917-5_13
https://doi.org/10.1007/978-3-319-66917-5_13
https://doi.org/10.1007/978-3-319-58274-0_12
https://doi.org/10.1007/978-3-319-58274-0_12
https://doi.org/10.1145/2960414.2960421
https://doi.org/10.1145/2184751.2184810
https://doi.org/10.5281/zenodo.2555898
https://doi.org/10.5281/zenodo.2555898
https://doi.org/10.1007/978-3-319-49157-8_9
https://doi.org/10.21936/si2012_v33.n2A.147
https://doi.org/10.1007/3-540-45875-1_25

	Serialization for Property Graphs
	1 Introduction
	2 Review of Current Graph Database Systems
	3 The Property Graph Data Model
	3.1 Formal Definition of a Property Graph
	3.2 Features of Current Property Graph Database Systems

	4 YARS-PG Serialization
	5 Related Work
	5.1 YARS-PG Versus YARS
	5.2 Graph Serialization Formats

	6 Conclusions
	References

