
The Expressive Power of SPARQL

Renzo Angles and Claudio Gutierrez

Technical Report TR/DCC-2008-5
Department of Computer Science, Universidad de Chile

{rangles,cgutierr}@dcc.uchile.cl

Abstract. This paper studies the expressive power of SPARQL. The
main result is that SPARQL and non-recursive safe Datalog with nega-
tion have equivalent expressive power, and hence, by classical results,
SPARQL is equivalent from an expressiveness point of view to Rela-
tional Algebra. We present explicit generic rules of the transformations
in both directions. Among other findings of the paper are the proof that
negation can be simulated in SPARQL, that non-safe filters are super-
fluous, and that current SPARQL W3C semantics can be simplified to a
standard compositional one.

1 Introduction

Determining the expressive power of a query language is crucial for understand-
ing its capabilities and complexity, that is, what queries a user is able to pose,
and how complex the evaluation of queries is, issues that are central considera-
tions to take into account when designing a query language.

SPARQL, the query language for RDF, has recently become a W3C rec-
ommendation [9]. In the RDF Data Access Working Group (WG) were it was
designed, expressiveness concerns generated ample debate. Many of them re-
mained open due to lack of understanding of the theoretical expressive power of
the language.

This paper studies in depth the expressive power of SPARQL. A first issue
addressed is the incorporation of negation. The W3C specification of SPARQL
provides explicit operators for join and union of graph patterns, even for speci-
fying optional graph patterns, but it does not define explicitly the difference of
graph patterns. Although intuitively it can be emulated via a combination of
optional patterns and filter conditions (like negation as failure in logic program-
ming), we show that there are several non-trivial issues to be addressed if one
likes to define the difference of patterns inside the language.

A second expressiveness issue refers to graph patterns with non-safe filter, i.e.,
graph patterns (P FILTER C) for which there are variables in C not present in
P . It turns out that these type of patterns, which have non-desirable properties,
can be simulated by safe ones (i.e., patterns where every variable occurring in
C also occurs in P). This simple result has important consequences for defining
a clean semantics, in particular a compositional and context-free one.

A third topic of concern was the presence of non desirable features in the
W3C semantics like its operational character. We show that the W3C specifi-
cation of the semantics of SPARQL is equivalent to a well behaved and stud-
ied compositional semantics for SPARQL, which we will denote in this paper
SPARQLC [6].

Using the above results, we are able to determine the expressive power of
SPARQL. We prove that SPARQLC and non-recursive safe Datalog with nega-
tion (nr-Datalog¬) are equivalent in their expressive power. For this, first we
show that SPARQLC is contained in nr-Datalog¬ by defining transformations
(for databases, queries, and solutions) from SPARQLC to nr-Datalog¬, and we
prove that the result of evaluating a SPARQLC query is equivalent, via the trans-
formations, to the result of evaluating (in nr-Datalog¬) the transformed query.
Second, we show that nr-Datalog¬ is contained in SPARQLC using a similar
approach. It is important to remark that the transformations used are explicit
and simple, and in all steps bag semantics is considered.

Finally, and by far, the most important result of the paper is the proof
that SPARQL has the same expressive power of Relational Algebra under bag
semantics (which is the one of SPARQL). This follows from the well known fact
that Relational Algebra has the same expressive power as nr-Datalog¬ [1].

The paper is organized as follows. In Section 2 we present preliminary ma-
terial. Section 3 presents the study of negation. Section 4 studies non-safe filter
patterns. Section 5 proves that the W3C specification of SPARQL and SPARQLC

are equivalent. Section 6 proves that SPARQLC and nr-Datalog¬ have the same
expressive power. Section 7 presents the conclusions.

Related Work. The W3C recommendation SPARQL is from January 2008. Hence,
it is no surprise that little work has been done in the formal study of its expres-
sive power. Several conjectures were raised during the WG sessions 1. Furche et
al. [3] surveyed expressive features of query languages for RDF (including old
versions of SPARQL) in order to compare them systematically. But there is no
particular analysis of the expressive power of SPARQL.

Cyganiak [2] presented a translation of SPARQL into Relational Algebra
considering only a core fragment of SPARQL. His work is extremely useful to
implement and optimize SPARQL in SQL engines. At the level of analysis of
expressive issues it presented a list of problems that should be solved (many of
which still persist), like the filter scope problem and the nested optional problem.

Polleres [8] proved the inclusion of the fragment of SPARQL patterns with
safe filters into Datalog by giving a precise and correct set of rules. Schenk [10]
proposed a formal semantics for SPARQL based on Datalog, but concentrated
on complexity more than expressiveness issues. Both works do not consider bag
semantics of SPARQL in their translations.

1 See http://lists.w3.org/Archives/Public/public-rdf-dawg-comments/, espe-
cially the years 2006 and 2007.

2

The work of Perez et al. [6] and the technical report [7], that gave the formal
basis for SPARQLC compositional semantics, addressed several expressiveness
issues, but no systematic study of the expressive power of SPARQL was done.

2 Preliminaries

2.1 RDF and Datasets

Assume there are pairwise disjoint infinite sets I, B, L (IRIs, Blank nodes, and
RDF literals respectively). We denote by T the union I ∪ B ∪ L (RDF terms).
A tuple (v1, v2, v3) ∈ (I ∪ B) × I × T is called an RDF triple, where v1 is the
subject, v2 the predicate, and v3 the object. An RDF Graph [4] (just graph from
now on) is a set of RDF triples. Given a graph G, term(G) denotes the set of
elements of T occurring in G and blank(G) denotes the set of blank nodes in G.
The union of graphs, G1∪G2, is the set theoretical union of their sets of triples.

An RDF dataset D is a set {G0, 〈u1, G1〉, . . . , 〈un, Gn〉} where each Gi is a
graph and each uj is an IRI. G0 is called the default graph of D and it is denoted
dg(D). Each pair 〈ui, Gi〉 is called a named graph; define name(Gi)D = ui and
gr(ui)D = Gi. We denote by term(D) the set of terms occurring in the graphs of
D. The set of IRIs {u1, . . . , un} is denoted names(D). Every dataset satisfies that:
(i) it always contains one default graph (which could be empty); (ii) there may
be no named graphs; (iii) each uj is distinct; and (iv) blank(Gi)∩blank(Gj) = ∅
for i 6= j. Finally, the active graph of D is the graph Gi used for querying D.

2.2 SPARQL

A SPARQL query is syntactically represented by a block consisting of a query
form (SELECT, CONSTRUCT or DESCRIBE), zero o more dataset clauses
(FROM and FROM NAMED), a WHERE clause, and possibly solution modi-
fiers (e.g. DISTINCT). The WHERE clause provides a graph pattern to match
against the RDF dataset constructed from the dataset clauses.

There are two formalizations of SPARQL which will be used throughout
this study: SPARQLWG, the W3C recommendation language SPARQL [9] and
SPARQLC, the formalization of SPARQL given in [6]. We will need some general
definitions before describe briefly both languages.

Assume the existence of an infinite set V of variables disjoint from T . We
denote by var(α) the set of variables occurring in the structure α. A tuple from
(I ∪L∪V)× (I ∪L∪V)× (I ∪V) is called a triple pattern. A basic graph pattern
is a finite set of triple patterns.

A filter constraint is defined recursively as follows: (i) if ?X, ?Y ∈ V and
u ∈ I ∪ L then ?X = u, ?X = ?Y , bound(?X), isIRI(?X), isLiteral(?X), and
isBlank(?X) are atomic filter constraints2; (ii) if C1 and C2 are filter constraints
then (¬C1), (C1 ∧ C2), and (C1 ∨ C2) are complex filter constraints.

2 For a complete list of atomic filter constraints see [9].

3

A mapping µ is a partial function µ : V → T . The domain of µ, dom(µ), is
the subset of V where µ is defined. The empty mapping µ0 is a mapping such
that dom(µ0) = ∅. Two mappings µ1, µ2 are compatible, denoted µ1 ∼ µ2, when
for all ?X ∈ dom(µ1) ∩ dom(µ2) it satisfies that µ1(?X) = µ2(?X), i.e., when
µ1 ∪ µ2 is also a mapping. The expression µ?X→v denote a mapping such that
dom(µ) = {?X} and µ(?X) = v

Let C1 and C2 be filter constrains. The evaluation of a filter constraint C
against a mapping µ, denoted µ(C), is defined in a three value logic with values
{true, false, error} as follows:

- if C is an atomic filter constraint, then
- if var(C) ⊆ dom(µ) then

µ(C) = true when
- C is ?X = u and µ(?X) = u; or
- C is ?X = ?Y and µ(?X) = µ(?Y); or
- C is isIRI(?X) and µ(?X) ∈ I; or
- C is isLiteral(?X) and µ(?X) ∈ L; or
- C is isBlank(?X) and µ(?X) ∈ B; or
- C is bound(?X);
and µ(C) = false otherwise.

- if var(C) * dom(µ) then
- if C is bound(?X) then µ(C) = false else µ(C) = error.3

– if C is a complex filter constraint, then µ(C) is defined as follows:

µ(C1) µ(C2) µ(C1) ∧ µ(C2) µ(C1) ∨ µ(C2)
true true true true
true false false true
true error error true
false true false true
false false false false
false error false error
error true error true
error false false error
error error error error

µ(C1) ¬µ(C1)
true false
false true
error error

A mapping µ satisfies a filter constraint C, denoted µ |= C, iff µ(C) = true.
Consider the following operations between two sets of mappings Ω1, Ω2:

Ω1 on Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1 ∼ µ2}
Ω1 onC Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 ∼ µ2 and (µ1 ∪ µ2) |= C}
Ω1 ∪Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}
Ω1 \Ω2 = {µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 and µ2 are not compatible }
Ω1 \C Ω2 = {µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 and µ2 are not compatible } ∪

{µ1 ∈ Ω1 | for all µ2 ∈ Ω2 compatible with µ1, (µ1 ∪ µ2) 2 C}
Ω1qyon Ω2 = (Ω1 on Ω2) ∪ (Ω1 \Ω2)
Ω1qyon CΩ2 = (Ω1 onC Ω2) ∪ (Ω1 \C Ω2)

3 Functions invoked with an argument of the wrong type are evaluated to error.

4

Table 1. Semantics of SPARQLC graph patterns. P1, P2 are SPARQLC graph patterns,
C is a filter constraint, u ∈ I and ?X ∈ V .

Graph pattern P Evaluation JP KD
G

(P1 AND P2) JP1KD
G on JP2KD

G

(P1 OPT P2) JP1KD
Gqyon JP2KD

G

(P1 UNION P2) JP1KD
G ∪ JP2KD

G

(P1 FILTER C) {µ | µ ∈ JP1KD
G and µ |= C}

(u GRAPH P1) JP1KD
gr(u)D

(?X GRAPH P1)
S

v∈names(D)(JP1KD
gr(v)D

on {µ?X→v})

Syntax and Semantics of SPARQLC.
A SPARQLC graph pattern P is defined recursively by the following grammar:

P ::= t | "(" GP ")"
GP ::= P "AND" P | P "UNION" P | P "OPT" P | P "FILTER" C | n "GRAPH" P

where t denotes a triple pattern, C denotes a filter constraint, and n ∈ I ∪ V .
The evaluation of a SPARQLC graph pattern P over an RDF dataset D

having active graph G, denoted JP KD
G (or JP K where D and G are clear from the

context), is defined recursively as follows:

– if P is a triple pattern t, JP KD
G = {µ | dom(µ) = var(t) and µ(t) ∈ G}

where µ(t) is the triple obtained by replacing the variables in t according to
mapping µ.

– if P is a complex graph pattern then JP KD
G is defined as given in Table 1.

Syntax and Semantics of SPARQLWG.
A SPARQLWG graph pattern GroupGP is defined by the following grammar4:

GroupGP ::= "{" TB? ((GPNotTriples | Filter) "."? TB?)* "}"
GPNotTriples ::= OptionalGP | GroupOrUnionGP | GraphGP
OptionalGP ::= "OPTIONAL" GroupGP
GraphGP ::= "GRAPH" VarOrIRIref GroupGP
GroupOrUnionGP ::= GroupGP ("UNION" GroupGP)*
Filter ::= "FILTER" Constraint

where TB denotes a basic graph pattern (a set of triple patterns), VarOrIRIref
denotes a term in the set I ∪V and Constraint denotes a filter constraint. Note
that the operator {A . B} represents the AND but it has not fixed arity.

4 http://www.w3.org/TR/rdf-sparql-query/#grammar. We use GP and TB to abbre-
viate GraphPattern and TriplesBlock respectively

5

The evaluation of a SPARQLWG graph pattern GroupGP is defined by a series
of steps, starting by transforming GroupGP, via a function T , into an intermediate
algebra expression E (with operators BGP, Join, Union, LeftJoin, Graph and
Filter), and finally evaluating E on an RDF dataset D.

The transformation T (GroupGP) is given by Algorithm 1. The evaluation of
E = T (GroupGP) over an RDF dataset D having active graph G, which we will
denote 〈〈E〉〉DG (or 〈〈E〉〉 where D and G are clear from the context)5, is defined
recursively as follows:

– if E is BGP(TB), 〈〈E〉〉DG = {µ | dom(µ) = var(E) and µ(E) ⊆ G} where
µ(E) is the set of triples obtained by replacing the variables in the triple
patterns of TB according to mapping µ.

– if E is a complex expression then 〈〈E〉〉DG is defined as given in Table 2.

Note 1. In the definition of graph patterns, we avoided blank nodes, because this
restriction does not diminish the generality of our study. In fact, each SPARQL
query Q can be simulated by a SPARQL query Q′ without blank nodes in its
pattern. It follows from the definitions of RDF instance mapping, solution map-
ping, and the order of evaluation of solution modifiers (see [9]), that if Q is a
query with graph pattern P , and Q′ is the same query where each blank node
b in P has been replaced by a fresh variable ?Xb then Q and Q′ give the same
results. (Note that, if Q has the query form SELECT or DESCRIBE, the “∗” pa-
rameter is –according to the specification of SPARQL– an abbreviation for all
variables occurring in the pattern. In this case the query Q′ should explicit in
the SELECT clause all variables of the original pattern P .)

Note 2. SPARQLC follows a compositional semantics, whereas SPARQLWG fol-
lows a mixture of compositional and operational semantics where the meaning
of certain patterns depends on their context, e.g., lines 7 and 8 in algorithm 1.

Note 3. In this paper we will follow the simpler syntax of SPARQLC, bet-
ter suited to do formal analysis and processing than the syntax presented by
SPARQLWG. There is an easy and intuitive way of translating back and forth
between both syntax formalisms, which we will not detail here.

5 The evaluation function in SPARQLWG is originally denoted eval(D(G), E) in [9].

6

Algorithm 1 Transformation of SPARQLWG patterns into algebra expressions.
1: // Input: a SPARQLWG graph pattern GroupGP

2: // Output: an algebra expression E = T (GroupGP)
3: E ← empty pattern; FS ← ∅
4: for each syntactic form f in GroupGP do
5: if f is TB then E ← Join(E, BGP(TB))
6: if f is OPTIONAL GroupGP1 then
7: if T (GroupGP1) is Filter(F, E′) then E ← LeftJoin(E, E′, F)
8: else E ← LeftJoin(E, T (GroupGP1), true)
9: if f is GroupGP1 UNION · · · UNION GroupGPn then

10: if n > 1 then
11: E′ ← Union(· · · (Union(T (GroupGP1), T (GroupGP2)) · · ·), T (GroupGPn))
12: else E′ ← T (GroupGP1)
13: E ← Join(E, E′)
14: end if
15: if f is GRAPH VarOrIRIref GroupGP1 then
16: E ← Join(E, Graph(VarOrIRIref, T (GroupGP1)))
17: if f is FILTER constraint then FS ← (FS ∧ constraint)
18: end for
19: if FS 6= ∅ then E ← Filter(FS, E)
20: return E

Table 2. Semantics of SPARQLWG graph patterns. A pattern GroupGP is transformed
into an algebra expression E using algorithm 1. Then E is evaluated as the table shows.
E1 and E2 are algebra expressions, C is a filter constraint, u ∈ I and ?X ∈ V .

Algebra Expression E Evaluation 〈〈E〉〉DG
Join(E1, E2) 〈〈E1〉〉DG on 〈〈E2〉〉DG
LeftJoin(E1, E2, C) 〈〈E1〉〉DGqyon C〈〈E2〉〉DG
Union(E1, E2) 〈〈E1〉〉DG ∪ 〈〈E2〉〉DG
Filter(C, E1) { µ | µ ∈ 〈〈E1〉〉DG and µ |= C}
Graph(u, E1) 〈〈E1〉〉Dgr(u)D

Graph(?X, E1)
S

v ∈ names(D)(〈〈E1〉〉Dgr(v)D
on {µ?X→v})

2.3 Datalog

We will briefly review notions of Datalog (For further details and proofs see [1,5]).
A term is either a variable or a constant. An atom is either a predicate

formula p(x1, ..., xn) where p is a predicate name and each xi is a term, or an
equality formula t1 = t2 where t1 and t2 are terms. A literal is either an atom
(a positive literal L) or the negation of an atom (a negative literal ¬L).

7

A Datalog rule is an expression of the form L ← L1, . . . , Ln where L is a
positive literal called the head6 of the rule and L1, . . . , Ln is a set of literals
called the body. A rule is ground if it does not have any variables. A ground rule
with empty body is called a fact.

A Datalog program Π is a finite set of Datalog rules. The set of facts occur-
ring in Π, denoted facts(Π), is called the initial database of Π. A predicate is
extensional in Π if it occurs only in facts(Π), otherwise it is called intensional.

A variable x occurs positively in a rule r if and only if x occurs in a positive
literal L in the body of r such that: (1) L is a predicate formula; (2) if L is x = c
then c is a constant; (3) if L is x = y or y = x then y is a variable occurring
positively in r. A Datalog rule r is said to be safe if all the variables occurring in
the literals of r (including the head of r) occur positively in r. A Datalog program
Π is safe if all the rules of Π are safe. The safety restriction provides a syntactic
restriction of programs which enforces the finiteness of derived predicates.

The dependency graph of a Datalog program Π is a digraph (N,E) where the
set of nodes N is the set of predicates that occur in the literals of Π, and there
is an arc (p1, p2) in E if there is a rule in Π whose body contains predicate p1

and whose head contains predicate p2. A Datalog program is said to be recursive
if its dependency graph is cyclic, otherwise it is said to be non-recursive.

Hence, a Datalog program is non-recursive and safe if it does not contain
any predicate that is recursive in the program and it can only generate a finite
number of answers. In what follows, we only consider non-recursive and safe
Datalog programs.

A substitution θ is a set of assignments {x1/t1, . . . , xn/tn} where each xi is a
variable and each ti is a term. Given a rule r, we denote by θ(r) the rule resulting
of substituting the variable xi for the term ti in each literal of r. A substitution
is ground if every term ti is a constant.

A rule r in a Datalog program Π is true with respect to a ground substitution
θ, if for each literal L in the body of r one of the following conditions is satisfied:
(i) θ(L) ∈ facts(Π); (ii) θ(L) is an equality t = t where t is a constant;
(iii) θ(L) is a literal of the form ¬p(c1, ..., cn) and p(c1, ..., cn) /∈ facts(Π);
(iv) θ(L) is a literal of the form ¬(c1 = c2) and c1 and c2 are distinct constants.

The meaning of a Datalog program Π, denoted facts∗(Π), is the database
resulting from adding to the initial database of Π as many new facts of the form
θ(L) as possible, where θ is a substitution that makes a rule r in Π true and L
is the head of r. Then the rules are applied repeatedly and new facts are added
to the database until this iteration stabilizes, i.e., until a fixpoint is reached.

A Datalog query Q is a pair (Π,L) where Π is a Datalog program and L is
a positive (goal) literal. The answer to Q over database D = facts(Π), denoted
ansd(Q,D) is defined as the set of substitutions {θ | θ(L) ∈ facts∗(Π)}.

6 We may assume that all heads of rules have only variables by adding the correspond-
ing equality formula to its body.

8

2.4 Comparing Expressive Power of Languages

By the expressive power of a query language, we understand the set of all queries
expressible in that language [1,5]. In order to determine the expressive power of
a query language L, usually one chooses a well-studied query language L′ and
compares L and L′ in their expressive power. Two query languages have the
same expressive power if they express exactly the same set of queries.

A given query language is defined as a quadruple (Q,D,S, eval), where Q is a
set of queries, D is a set of databases, S is a set of solutions, and eval : Q×D → S
is the evaluation function. The evaluation of a query Q ∈ Q on a database
D ∈ D is denoted eval(Q,D) (usually eval(Q,D) is simply denoted Q(D) if no
confusion arises). Two queries Q1, Q2 ∈ Q are equivalent, denoted Q1 ≡ Q2, if
eval(Q1, D) = eval(Q2, D) for every D ∈ D, i.e., they return the same answer
for all input databases.

Let L1 = (Q1,D1,S1, eval1) and L2 = (Q2,D2,S2, eval2) be two query lan-
guages. We say that L1 is contained in L2 if and only if there are bijective
data transformations TD : D1 → D2 and TS : S1 → S2, and query transfor-
mation TQ : Q1 → Q2, such that for all Q ∈ Q1 and D ∈ D1 it satisfies that
TS(eval1(Q, D)) = eval2(TQ(Q), TD(D)). We say that L1 and L2 are equivalent
if and only if L1 is contained in L2 and L2 is contained in L1. (Note that if L1

and L2 are subsets of a language L, then TD, TS and TQ are the identity.)

3 Expressing Difference of Patterns in SPARQL
WG

The SPARQLWG specification indicates that it is possible to test if a graph
pattern does not match a dataset, via a combination of optional patterns and
filter conditions (like negation as failure in logic programming)([9] Sec. 11.4.1).
In this section we analyze in depth the scope and limitations of this approach.

We will introduce a syntax for the “difference” of two graph patterns P1 and
P2, denoted (P1 MINUSP2), with the intended informal meaning: “the set of
mappings that match P1 and does not match P2”. Formally:

Definition 1. Let P1, P2 be graph patterns and D be a dataset with active graph
G. Then

〈〈(P1 MINUSP2)〉〉DG = 〈〈P1〉〉DG \ 〈〈P2〉〉DG .

A naive implementation of the MINUS operator in terms of the other opera-
tors would be the graph pattern ((P1 OPT P2) FILTERC) where C is the filter
constraint (¬bound(?X)) for some variable ?X ∈ var(P2) \ var(P1). This means
that for each mapping µ ∈ 〈〈(P1 OPT P2)〉〉DG at least one variable ?X occurring
in P2, but not occurring in P1, does not match (i.e., ?X is unbounded). There
are two problems with this solution:

– Variable ?X cannot be an arbitrary variable. For example, P2 could be in
turn an optional pattern (P3 OPT P4) where only variables in P3 are relevant.

– If var(P2) \ var(P1) = ∅ there is no variable ?X to check unboundedness.

9

The above two problems motivate the introduction of the notions of non-optional
variables and copy patterns.

The set of non-optional variables of a graph pattern P , denoted nov(P), is a
subset of the variables of P defined recursively as follows: nov(P) = var(P) when
P is a basic graph pattern; if P is either (P1 ANDP2) or (P1 UNIONP2) then
nov(P) = nov(P1)∪nov(P2); if P is (P1 OPT P2) then nov(P) = nov(P1); if P is
(n GRAPH P1) then either nov(P) = nov(P1) when n ∈ I or nov(P) = nov(P1)∪
{n} when n ∈ V ; and nov(P1 FILTER C) = nov(P1). Intuitively nov(P) contains
the variables that necessarily must be bounded in any mapping of P .

Let φ : V → V be a variable-renaming function. Given a graph pattern P , a
copy pattern φ(P) is an isomorphic copy of P whose variables have been renamed
according to φ and satisfying that var(P) ∩ var(φ(P)) = ∅.

Theorem 1. Let P1 and P2 be graph patterns. Then:

(P1 MINUSP2) ≡ ((P1 OPT((P2 ANDφ(P2)) FILTERC1)) FILTERC2) (1)

where:

– C1 is the filter constraint (?X1 =?X ′
1∧· · · ∧?Xn =?X ′

n) where ?Xi ∈ var(P2)
and ?X ′

i = φ(?Xi) for 1 ≤ i ≤ n.
– C2 is the filter constraint (¬bound(?X ′)) for some ?X ′ ∈ nov(φ(P2)).

Proof. Let P be the graph pattern (P1 MINUSP2) and P ′ be the right hand side
of (1). We will prove that for every dataset D with active graph G, it satisfies
that 〈〈P 〉〉DG = 〈〈P ′〉〉DG .

(a) Evaluation 〈〈P 〉〉: By definition, 〈〈P 〉〉 = 〈〈P1〉〉 \ 〈〈P2〉〉. Then, a mapping µ is
in 〈〈P 〉〉 if and only if µ ∈ 〈〈P1〉〉 and for every mapping µ′ ∈ 〈〈P2〉〉, µ and µ′

are not compatible.
(b) Evaluation 〈〈P ′〉〉: To simplify the idea of the proof, we reduce P ′ to the

graph pattern ((P1 OPT P2) FILTER C2) where C2 is (¬bound(?X)) for
some ?X ∈ nov(P2) \ var(P1). Note that this reduction does not dimin-
ish the generality of the proof because φ(P2) and C1 were added into P ′ to
solve the case when nov(P2) \ var(P1) = ∅ (See Note 4 later).
Here, a mapping µ is in 〈〈P ′〉〉 if and only if µ ∈ 〈〈(P1 OPT P2)〉〉 and µ |= C2.
Given µ1 ∈ 〈〈P1〉〉, it holds that µ ∈ 〈〈(P1 OPT P2)〉〉 iff either (i) µ = µ1 ∪µ2

for some µ2 ∈ 〈〈P2〉〉 compatible with µ1; or (ii) µ = µ1 and for every µ2 ∈
〈〈P2〉〉, µ1 and µ2 are not compatible. Note that, in case (i), µ(?X) is bounded
for every variable ?X ∈ nov(P2) and, in case (ii), µ(?X) is unbounded for
every variable ?X ∈ nov(P2) \ var(P1). Given that C2 contains the filter
constraint (¬bound(?X)) for some variable ?X ∈ nov(P2) \ var(P1), only
case (ii) satisfies the condition µ |= C2 (Note that here is critical the fact
that ?X is a safe variable occurring in P2 but not in P1).
Then, 〈〈P ′〉〉 will only contain mappings from case (ii), that is each mapping
µ ∈ 〈〈P ′〉〉 satisfies that µ = µ1 ∈ 〈〈P1〉〉 and for every mapping µ2 ∈ 〈〈P2〉〉,
µ1 and µ2 are not compatible.
Therefore, 〈〈P ′〉〉 has exactly the same mappings as the evaluation of 〈〈P 〉〉
in (a), and we conclude the proof.

10

Note 4 (Why the copy pattern φ(P) is necessary?).
Consider the naive implementation for (P1 MINUSP2), that is the graph pat-

tern ((P1 OPT P2) FILTER C) where C is the filter constraint (¬bound(?X))
for some ?X ∈ var(P2) \ var(P1).

Note that the above implementation would fail when var(P2) \ var(P1) = ∅,
because there exist no variables to check unboundedness. For example, consider
the graph patterns P1 = (?X, name, ?N) and P2 = (?X, lastname,“Perez”). The
naive implementation of (P1 MINUSP2) will give a pattern with filter condition
C = ∅ because there are no variables in var(P2) \ var(P1) (Note that it is not
possible to use variable ?X to check unboundedness when evaluating P2 because
–to satisfy the entire pattern– variable ?X must have already been bound in the
evaluation of pattern P1).

To solve this problem, P2 is replaced by ((P2 ANDφ(P2)) FILTERC1) where
φ(P2) is a copy of P2 whose variables have been renamed and whose relations
of equality with the original ones are in condition C1. Then we can use some
variable from φ(P2) to check if graph pattern P2 does not match. The copy
pattern ensures that there will exist a variable to check unboundedness.

Then, the implementation of (P1 MINUSP2) in the example will be

(((?X, name, ?N) OPT
(((?X, lastname,“Perez”)AND(?X ′, lastname,“Perez”))

FILTER(?X =?X ′))) FILTER(¬bound(?X ′))),

where variable ?X ′ ∈ φ(P2) has been selected to check unboundedness.
Note that the inclusion of copy patterns could introduce an exponential blow-

up in the size of the pattern. A possible optimization (still inside the syntax of
SPARQL) is to select a safe triple pattern t of P2, i.e., a triple pattern having
only safe variables (at least one), and using the copy pattern φ(t) instead of the
entire copy pattern φ(P2).

Note 5 (Why non-optional variables?).
Consider the graph pattern

P = ((?X, name, ?N) MINUS((?X, knows, ?Y) OPT(?Y,mail, ?Z))).

The naive implementation of P would be the graph pattern

P ′ = ((P1 OPT P2) FILTER(¬bound(?Z))),

where P1 = (?X,name, ?N), P2 = ((?X,knows, ?Y) OPT(?Y,mail, ?Z)) and ?Z
is the variable selected to check unboundedness. (Note that variable ?Y could
also have been selected because ?Y ∈ var(P2) \ var(P1).)

Additionally, consider the RDF graph

G = { (a,name,na), (b,name,nb), (b,knows,c), (b,mail,mb),
(c,name,nc), (c,knows,d), (d,name,nd), (d,mail,md) }.

11

Let P2 = (P3 OPT P4) where P3 = (?X,knows, ?Y) and P4 = (?Y,mail, ?Z).
Consider the following evaluations over graph G:

JP1KG =

?X ?N
a na

b nb

c nc

d nd

JP3KG =
?X ?Y
b c
c d

JP4KG =
?Y ?Z
b mb

d md

JP2KG =
?X ?Y ?Z
b c
c d md

J(P1 OPT P2)KG =

?X ?N ?Y ?Z
a na

b nb c
c nc d md

d nd

Then P = (P1 MINUSP2) and P ′ = ((P1 OPT P2) FILTER(¬bound(?Z))) are
evaluated as follows:

JP KG =
?X ?N
a na

d nd

JP ′KG =

?X ?N ?Y ?Z
a na

b nb c
d nd

Note that the evaluation of graph pattern P ′ differs from that of pattern P .
To see the problem recall the informal semantics: a mapping µ matches pattern P
if and only if µ matches P1 and µ does not match P2. This latter condition means:
it is false that every variable in P2 (but not in P1) is bounded. But to say “every
variable” is not correct in this context because P2 contains the optional pattern
(?Y,mail, ?Z), and its variables could be unbounded for some valid solutions of
P2. Hence the problem is produced by the expression (¬bound(?Z)), because
the bounding state of variable ?Z introduces noise when testing if pattern P2

gets matched.
In fact, consider the mapping µ such that µ(?X) = b, µ(?N) = nb and

µ(?Y) = c. This mapping is not a solution for P because it matches P2 since
it matches (?X,knows, ?Y) although it does not match the optional pattern
(?Y,mail, ?Z). On the other hand, we have that µ matches P ′ because it matches
(P1 OPT P2) and µ satisfies the filter constraint (¬bound(?Z)).

Now, if we ensure the selection of a “non-optional variable” to check un-
boundedness when transforming P , we have that ?Y is the unique non-optional
variable occurring in P2 but not occurring in P1, i.e., variable ?Y works exactly
as the test to check if a mapping matching P1 matches P2 as well. Hence, instead
of P ′, the graph pattern

P ′′ = ((P1 OPT P2) FILTER(¬bound(?Y)))

is the one that expresses faithfully the graph pattern (P1 MINUSP2), and in
fact, the evaluation of P ′′ gives exactly the same set of mappings as P .

12

4 Avoiding Unsafe Patterns in SPARQL
WG

One influential point in the evaluation of patterns in SPARQLWG is the behavior
of filters. What is the scope of a filter? What is the meaning of a filter having
variables that do not occur in the graph pattern to be filtered?

It was proposed in [6] that for reasons of simplicity for the user and cleanness
of the semantics, the scope of filters should be the expression which they filter,
and free variables should be disallowed in the filter condition. Formally, a graph
pattern of the form (P FILTER C) is said to be safe if var(C) ⊆ var(P). In [6]
only safe filter patterns were allowed in the syntax, and hence the scope of the
filter C is the pattern P which defines the filter condition. This approach is
further supported by the fact that non-safe filters are rare in practice.

The WG decided to follow a different approach, and defined the scope of a
filter condition C to be a case-by-case and context-dependent feature:

1. The scope of a filter is defined as follows: a filter “is a restriction on solutions
over the whole group in which the filter appears”.

2. There is one exception, though, when filters combine with optionals. If a filter
expression C belongs to the group graph pattern of an optional, the scope
of C is local to the group where the optional belongs to. This is reflected in
lines 7 and 8 of Algorithm 1.

The complexities that this approach brings were recognized in the discussion
of the WG, and can be witnessed by the reader by following the evaluation of
patterns in SPARQLWG.

Let SPARQLSafe
WG be the subset of queries of SPARQLWG having only filter-

safe patterns. In what follows, we will show that, in SPARQLWG, non-safe filters
are superfluous, and hence its non-standard and case-by-case semantics can be
avoided. In fact, we will prove that non-safe filters do not add expressive power
to the language, or in other words, that SPARQLWG and SPARQLSafe

WG have the
same expressive power, that is, for each graph pattern P there is a filter-safe
graph pattern P ′ = safe(P) which computes exactly the same mappings as P .

The transformation safe(P) is given by Algorithm 2. This algorithm works
as the identity for most patterns. The key part is the treatment of patterns
which combine filters and optionals. Line 9 is exactly the codification of the
SPARQLWG evaluation of filters inside optionals. For non-safe filters (see lines
15-20), it replaces each atomic filter condition C ′, where a free variable occurs,
by either an expression false when C ′ is bound(·); or an expression bound(a)
otherwise. (Note that bound(a) is evaluated to error because a is a constant.)

Note 6 (On Algorithm 2). The expression in line 9 must be refined for bag
semantics to the expression:

P ′ ← (safe((P1 ANDP3) FILTER C) UNION
(safe(P1) MINUS safe(P3))UNION
((safe(P1) MINUS(safe(P1) MINUS safe(P3)))

MINUS safe((P1 ANDP3) FILTER C)))

13

Algorithm 2 Transformation of a general graph pattern into a safe pattern.
1: // Input: a SPARQLWG graph pattern P
2: // Output: a safe graph pattern P ′ ← safe(P)
3: P ′ ← ∅
4: if P is (P1 AND P2) then P ′ ← (safe(P1) AND safe(P2))
5: if P is (P1 UNION P2) then P ′ ← (safe(P1)UNION safe(P2))
6: if P is (n GRAPH P1) then P ′ ← (n GRAPH safe(P1))
7: if P is (P1 OPT P2) then
8: if P2 is (P3 FILTER C) then
9: P ′ ← (safe(P1)OPT(safe((P1 AND P3) FILTER C)))

10: else P ′ ← (safe(P1)OPT safe(P2))
11: end if
12: if P is (P1 FILTER C) then
13: if var(C) ⊆ var(safe(P1)) then P ′ ← (safe(P1) FILTER C)
14: else
15: for all ?X ∈ var(C) and ?X /∈ var(safe(P1)) do
16: for all atomic filter constraint C′ in C
17: if C′ is (?X = u) or (?X =?Y) or isIRI(?X) or isBlank(?X) or isLiteral(?X)
18: Replace in C the constraint C′ by bound(a) //where a is a constant
19: else if C′ is bound(?X) then
20: Replace in C the constraint C′ by false
21: end for
22: end for
23: P ′ ← (safe(P1) FILTER C)
24: end if
25: end if
26: return P ′

Lemma 1. For every SPARQLWG graph pattern P , the pattern safe(P) is filter-
safe and it holds 〈〈P 〉〉 = 〈〈safe(P)〉〉.

Proof. We present the proof for the most relevant cases presented in Algorithm 2,
that is, (a) transformation in line 9 and (b) rewriting of filters in lines 17-20.

(a) Let P = (P1 OPT(P2 FILTER C)). Here T (P) = LeftJoin(T (P1), T (P2), C)
and 〈〈T (P)〉〉 = 〈〈T (P1)〉〉qyon C〈〈T (P2)〉〉.
Suppose that Ω1 = 〈〈T (P1)〉〉 and Ω2 = 〈〈T (P2)〉〉. Then 〈〈T (P)〉〉 is given by
the expression (Ω1 onC Ω2) ∪ (Ω1 \C Ω2) where:

(?)(Ω1 onC Ω2) =
{µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 ∼ µ2, and (µ1 ∪ µ2) |= C}

(??)(Ω1 \C Ω2) =
{µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 and µ2 are not compatible} ∪
{µ1 ∈ Ω1 | for all µ2 ∈ Ω2 compatible with µ1, (µ1 ∪µ2) 2 C}

(i) Let P ′ = (P1 OPT((P1 ANDP2) FILTER C)). We will prove that, under
set semantics, 〈〈P 〉〉DG = 〈〈P ′〉〉DG for every dataset D with active graph G.

14

Consider that P3 = (P1 ANDP2). Then T (P ′) returns the algebra ex-
pression LeftJoin(T (P1), T (P3), C) and 〈〈T (P ′)〉〉 = 〈〈T (P1)〉〉qyon C〈〈T (P3)〉〉.
Suppose that Ω1 = 〈〈T (P1)〉〉, Ω2 = 〈〈T (P2)〉〉 and Ω3 = 〈〈T (P3)〉〉. Then
〈〈T (P ′)〉〉 is given by the expression (Ω1 onC Ω3) ∪ (Ω1 \C Ω3) where:

(1)(Ω1 onC Ω3) =
{µ1 ∪ µ3 | µ1 ∈ Ω1, µ3 ∈ Ω3, µ1 ∼ µ3 and (µ1 ∪ µ3) |= C}

and
(2)(Ω1 \C Ω3) =
{µ1 ∈ Ω1 | for all µ3 ∈ Ω3, µ1 and µ3 are not compatible} ∪
{µ1 ∈ Ω1 | for all µ3 ∈ Ω3 compatible with µ1, (µ1∪µ3) 2 C}.

Assume Ω3 = Ω1 on Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1 ∼ µ2}. If
we rewrite (1) by solving µ3, we will have the set

(1.1){µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 ∼ µ2 and (µ1 ∪ µ2) |= C}.
In the former set of (2): by definition of Ω3, it applies that µ1 is not
compatible with every mapping (µ′1 ∪ µ2) ∈ Ω3 such that µ′1 ∈ Ω1,
µ2 ∈ Ω2 and µ′1 ∼ µ2. This condition is true if and only if µ′1 6= µ1.
Consequently µ1 is not compatible with every µ2 ∈ Ω2. Then, we can
simplify the former set in (2) as:

(2.1){µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 and µ2 are not compatible}

In the latter set of (2): by definition of Ω3, we have that each mapping
(µ′1 ∪µ2) ∈ Ω3 such that µ′1 ∈ Ω1, µ2 ∈ Ω2, µ′1 ∼ µ2 and µ1 ∼ (µ′1 ∪µ2),
it satisfies that (µ1 ∪ (µ′1 ∪ µ2)) 2 C. The condition µ1 ∼ (µ′1 ∪ µ2) is
true if and only if µ′1 = µ1. Consequently µ1 is compatible with some
µ2 ∈ Ω2 and (µ1 ∪ µ2) 2 C. Then, we can simplify the latter set in (2)
to the set:

(2.2){µ1 ∈ Ω1 | for all µ2 ∈ Ω2 compatible with µ1, (µ1 ∪ µ2) 2 C}

Finally, we have that (1.1) corresponds to (?), (2.1) is the former set in
(??) and (2.2) is the latter set in (??).
Then, we have proved that 〈〈P 〉〉 = 〈〈P ′〉〉.

(ii) Let P ′ be the graph pattern
(((P1 ANDP2) FILTERC)UNION

(P1 MINUSP2) UNION
((P1 MINUS(P1 MINUSP2))

MINUS((P1 ANDP2) FILTERC)))
We will prove that, under bag semantics, 〈〈P 〉〉DG = 〈〈P ′〉〉DG for every
dataset D with active graph G.
Consider that P3 = ((P1 ANDP2) FILTER C), P4 = (P1 MINUSP2) and
P5 = ((P1 MINUS(P1 MINUSP2))MINUS((P1 ANDP2) FILTERC)). We
have that T (P ′) = Union(Union(T (P3), T (P4)), T (P5)) where

T (P3) = Filter(C, Join(T (P1), T (P2))),
T (P4) = Diff(T (P1), T (P2), true), and
T (P5) = Diff(Diff(T (P1), T (P4), true), T (P3), true)

15

Suppose that Ω1 = 〈〈T (P1)〉〉 and Ω2 = 〈〈T (P2)〉〉. Then 〈〈T (P ′)〉〉 is given
by the expression 〈〈T (P3)〉〉 ∪ 〈〈T (P4)〉〉 ∪ 〈〈T (P5)〉〉 where
〈〈T (P3)〉〉 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 ∼ µ2, and

(µ1 ∪ µ2) |= C}
〈〈T (P4)〉〉 = {µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 and µ2 are not compatible} ∪

{µ1 ∈ Ω1 | for all µ2 ∈ Ω2 compatible with µ1,
(µ1 ∪ µ2) 2 true}

〈〈T (P5)〉〉 = (〈〈P1〉〉 \true 〈〈T (P4)〉〉) \true 〈〈T (P3)〉〉
= {µ1 ∈ Ω1 | for all µ2 ∈ Ω2 compatible with µ1,

(µ1 ∪ µ2) 2 C}
From the above sets we can state that:
• 〈〈T (P3)〉〉 correspond to the set in (?);
• 〈〈T (P4)〉〉 correspond to the former set in (??). Note that the second

set will always be empty because condition (µ1 ∪ µ2) 2 true is false
in any case.
• The expression (〈〈P1〉〉 \true 〈〈T (P4)〉〉) returns the subset of mappings

in 〈〈P1〉〉 which are compatible with some mapping in 〈〈P2〉〉; from this
set we subtract mappings from 〈〈P3〉〉 (i.e. such mappings that satis-
fies condition C); Then 〈〈T (P5)〉〉 returns mappings in 〈〈P1〉〉 that are
compatible with some mapping in 〈〈P2〉〉 but not satisfying condition
C, that is 〈〈T (P5)〉〉 corresponds to the latter set in (??).

Then we have proved that 〈〈P 〉〉 = 〈〈P ′〉〉.

(b) Consider the following semantics defined in the SPARQLWG specification [9]:
– Apart from bound(·), all functions and operators operate on RDF Terms

and will produce a type error if any arguments are unbound (Sec. 11.2).
– Function bound(var) returns true if var is bound to a value, and returns

false otherwise (Sec. 11.4.1).
Let P be the non-safe graph pattern (P1 FILTER C), ?X be a variable in
var(C) \ var(P1) and µ be a mapping in 〈〈P1〉〉. The evaluation µ(C ′) of an
atomic filter constraint C ′ in C which contains variable ?X, will be given
(according to the above semantics) as follows:
(i) if C ′ is (?X = u) or (?X =?Y) or isIRI(?X) or isBlank(?X) or isLiteral(?X)

then µ(C ′) = error;
(ii) else if C ′ is bound(?X) then µ(C ′) = false.
To attain the same results, we can replace C ′ in C by either
– the filter expression bound(a) with a ∈ I ∪ L in case (i); or
– the filter expression false in case (ii).

Applying the above procedure to each atomic filter condition in C having a
variable in var(C) \ var(P1), we will transform P in a safe filter pattern.

Thus we proved:

Theorem 2. SPARQLWG and SPARQLSafe

WG have the same expressive power.

16

5 Expressive power of SPARQL
WG

is equivalent to
SPARQL

C

As we have been showing, the semantics that the WG gave to SPARQL departed
in some aspects from a compositional semantics. We also indicated that there
is an alternative formalization, with a standard compositional semantics, which
was called SPARQLC [6].

The good news is that, albeit apparent differences, these languages are equiv-
alent in expressive power, that is, they compute the same class of queries.

Theorem 3. SPARQLSafe

WG is equivalent to SPARQLC under bag semantics.

Proof. The proof of this theorem is an induction on the structure of patterns. The
only non-evident case is the particular evaluation of filters inside optionals where
the semantics of SPARQLSafe

WG and SPARQLC differ. Specifically, given a graph
pattern P = (P1 OPT(P2 FILTER C)), we have that SPARQLSafe

WG evaluates the
algebra expression T (P) = LeftJoin(T (P1), T (P2), C), whereas SPARQLC eval-
uates P to the expression JP1Kqyon J(P2 FILTER C)K, which is the same as the
SPARQLWG algebra expression LeftJoin(T (P1),Filter(C, T (P2)), true). Note that
the scope of filter condition C in SPARQLWG is the entire pattern P , whereas
in SPARQLC the scope of C is the graph pattern P2.

Let P be the graph pattern (P1 OPT(P2 FILTER C)) where var(C) ⊆ var(P2)
(i.e., P is filter safe). We will show that for every dataset D with active graph
G, it satisfies that 〈〈P 〉〉DG = JP KD

G .

– Evaluation 〈〈P 〉〉DG : Following the steps of evaluation in SPARQLWG, we have
that T (P) = LeftJoin(T (P1), T (P2), C) and 〈〈T (P)〉〉 = 〈〈T (P1)〉〉qyon C〈〈T (P2)〉〉.
Suppose that Ω1 = 〈〈T (P1)〉〉 and Ω2 = 〈〈T (P2)〉〉. Then 〈〈T (P)〉〉 is given by
the expression (Ω1 onC Ω2) ∪ (Ω1 \C Ω2) where:

(?)(Ω1 onC Ω2) =
{µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 ∼ µ2 and (µ1 ∪ µ2) |= C}

and
(??)(Ω1 \C Ω2) =

{µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 and µ2 are not compatible} ∪
{µ1 ∈ Ω1 | for all µ2 ∈ Ω2 compatible with µ1, (µ1∪µ2) 2 C}.

– Evaluation JP KD
G : We have that JP K = JP1Kqyon J(P2 FILTER C)K.

Suppose that Ω1 = JP1K, Ω2 = JP2K and Ω3 = J(P2 FILTER C)K. Then JP K
is given by the expression (Ω1 on Ω3) ∪ (Ω1 \Ω3) where

(1)(Ω1 on Ω3) = {µ1 ∪ µ3 | µ1 ∈ Ω1, µ3 ∈ Ω3 and µ1 ∼ µ3}
and

(2)(Ω1\Ω3) = {µ1 ∈ Ω1 | for all µ3 ∈ Ω3, µ1 and µ3 are not compatible}.
Considering that Ω3 = {µ2 ∈ Ω2 | µ2 |= C}. If we redefine (1) by solving
µ3 ∈ Ω3, we will have the set

(1.1){µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 ∼ µ2 and (µ1 ∪ µ2) |= C}.

17

Additionally, consider to change the universal quantifier in (2) by an exis-
tential one, That is (Ω1 \ Ω3) = {µ1 ∈ Ω1 | @µ3 ∈ Ω3 such that µ1 ∼ µ3}.
Here we have two cases:
• When Ω3 = ∅. In this case, there exists no mapping µ2 ∈ Ω2 satisfying

that µ2 |= C. Then this case encodes the set
(2.1){µ1 ∈ Ω1 | for all µ2 ∈ Ω2 compatible with µ1, (µ1 ∪ µ2) 2 C}.

• When Ω3 6= ∅. In this case, for each mapping µ2 ∈ Ω2 satisfying that
µ2 |= C, it applies that µ1 and µ2 are not compatible. Then this case
encodes the set

(2.2){µ1 ∈ Ω1 | for all µ2 ∈ Ω2 such that µ2 |= C,
µ1 and µ2 are not compatible}

Note that (1.1) corresponds to (?), (2.1) corresponds to the latter set in (??),
and (2.2) corresponds to the former set in (??). Then we have proved that
〈〈P 〉〉DG = JP KD

G .

6 Expressive Power of SPARQL
C

In this section we study the expressive power of SPARQLC by comparing it
against non recursive safe Datalog with negation (just Datalog from now on).

Note that because SPARQLC and Datalog programs have different type of
input and output formats, we have to normalize them to be able to do the
comparison. Following definitions in section 2.4, let Ls = (Qs,Ds,Ss, anss) be
the SPARQLC language, and Ld = (Qd,Dd,Sd, ansd) be the Datalog language.

In this comparison we restrict the notion of SPARQLC Query to a pair (P,D)
where P is a graph pattern and D is an RDF dataset.

6.1 From SPARQLC to Datalog

To prove that the SPARQLC language Ls = (Qs,Ds,Ss, anss) is contained in
the Datalog language Ld = (Qd,Dd,Sd, ansd), we define transformations TQ :
Qs → Qd, TD : Ds → Dd, and TS : Ss → Sd. That is, TQ transforms a SPARQLC

query into a Datalog query, TD transforms an RDF dataset into a set of Datalog
facts, and TS transforms a set of SPARQLC mappings into a set of Datalog
substitutions.

RDF datasets as Datalog facts.
Given an RDF dataset D = {G0, 〈u1, G1〉, . . . , 〈un, Gn〉}, the transformation
TD(D) works as follows: each term t in D is encoded by a fact iri(t), blank(t) or
literal(t) when t is an IRI, a blank node or a literal respectively; the set of terms
in D is defined by the set of rules term(X)← iri(X), term(X)← blank(X), and
term(X)← literal(X); the fact Null(null) encodes the null value 7; each triple
(v1, v2, v3) in the default graph G0 is encoded by a fact triple(g0, v1, v2, v3); each
named graph 〈ui, Gi〉 is encoded by a fact graph(u) and each triple (v1, v2, v3)
in Gi is encoded by a fact triple(ui, v1, v2, v3).
7 We use the term null to represent an unbounded value.

18

Table 3. Transforming SPARQLC graph patterns into Datalog Rules. D is a dataset
having active graph identified by g. var(P) denotes the tuple of variables obtained from
a lexicographical ordering of the variables in the graph pattern P . Each pi is a predicate
identifying the graph pattern Pi. If L is a literal, then νj(L) denotes a copy of L with
its variables renamed according to a variable renaming function νj : V → V . cond is
a literal encoding the filter condition C. Each P1i is a copy of P1 and ui ∈ names(D).
P3 = (P1 AND P2), P4 = (P1 FILTER C1) and P5 = (P1 FILTER C2).

Pattern P δ(P, g)D

(x1, x2, x3) p(var(P))← triple(g, x1, x2, x3)

(P1 AND P2) p(var(P))← ν1(p1(var(P1))) ∧ ν2(p2(var(P2)))V
x∈var(P1)∩var(P2) comp(ν1(x), ν2(x), x),

δ(P1, g)D , δ(P2, g)D

dom(ν1) = dom(ν2) = var(P1) ∩ var(P2), range(ν1) ∩ range(ν2) = ∅.
(P1 UNION P2) p(var(P))← p1(var(P1))

V
x∈var(P2)∧x/∈var(P1) Null(x),

p(var(P))← p2(var(P2))
V

x∈var(P1)∧x/∈var(P2) Null(x),

δ(P1, g)D , δ(P2, g)D

(P1 OPT P2) p(var(P))← p3(var(P3)),

p(var(P))← p1(var(P1)) ∧ ¬p′1(var(P1))
V

x∈var(P2)∧x/∈var(P1) Null(x),

p′1(var(P1))← p3(var(P3)),
δ(P1, g)D , δ(P2, g)D , δ(P3, g)D

(u GRAPH P1) p(var(P))← p1(var(P1)),

and u ∈ I δ(P1, u)D

(?X GRAPH P1) p(var(P))← p11(var(P11)) ∧ graph(?X) ∧ ?X = u1,

and ?X ∈ V δ(P11, u1)D,
· · ·
p(var(P))← p1n(var(P1n)) ∧ graph(?X) ∧ ?X = un,
δ(P1n, un)D

(P1 FILTER C) p(var(P))← p1(var(P1)) ∧ cond

C is atomic δ(P1, g)D

(P1 FILTER C) p(var(P))← p1(var(P1)) ∧ ¬p4(var(P1)),

C is (¬(C1)) δ(P1, g)D , δ(P4, g)D

(P1 FILTER C) p(var(P))← p1(var(P1)) ∧ ¬p′(var(P1)),

C is (C1 ∧ C2) p′(var(P1))← p1(var(P1)) ∧ ¬p′′(var(P1)),

p′′(var(P1))← p4(var(P1)) ∧ p5(var(P1)),
δ(P1, g)D, δ(P4, g)D , δ(P5, g)D

(P1 FILTER C) p(var(P))← p1(var(P1)) ∧ ¬p′(var(P1)),

C is (C1 ∨ C2) p′(var(P1))← p1(var(P1)) ∧ ¬p′′(var(P1))

p′′(var(P1))← p4(var(P1)),
p′′(var(P1))← p5(var(P1)),
δ(P1, g)D, δ(P4, g)D , δ(P5, g)D

19

SPARQLC mappings as Datalog substitutions.
Given a graph pattern P , an RDF dataset D with default graph G, and the set
of mappings Ω = JP KD

G . The transformation TS(Ω) returns a set of substitutions
defined as follows: for each mapping µ ∈ Ω there exists a substitution θ in TS(Ω)
satisfying that, for each x ∈ var(P) there exists x/t ∈ θ such that t = µ(x) when
µ(x) is bounded and t = null otherwise.

Graph patterns as Datalog rules.
Let P be a graph pattern to be evaluated against an RDF graph identified by g
which occurs in dataset D. We denote by δ(P, g)D the function which transforms
P into a set of Datalog rules. Table 3 shows the transformation rules defined by
the function δ(P, g)D, where:

– The notion of compatible mappings is implemented by the rules:
comp(X, X, X)← term(X),
comp(X, null,X)← term(X)
comp(null,X,X)← term(X) and
comp(X, X, X)← Null(X).

– Let ?X, ?Y ∈ V and u ∈ I ∪ L. An atomic filter condition C is encoded by
a literal L as follows:
• if C is either (?X = u) or (?X =?Y) then L is C;
• if C is isIRI(?X) then L is iri(?X);
• if C is isLiteral(?X) then L is literal(?X);
• if C is isBlank(?X) then L is blank(?X);
• if C is bound(?X) then L is ¬Null(?X).

The transformation follows essentially the intuitive transformation presented
by Polleres [8] with the improvement of the necessary code to support faithful
translation of bag semantics. Specifically, we changed the transformations for
complex filter expressions by simulating them with double negation.

SPARQLC queries as Datalog queries.
Given a SPARQLC query Q = (P,D) where P is a graph pattern and D is
an RDF dataset. The function TQ(Q) returns the Datalog query (Π, p(var(P)))
where Π is the Datalog program TD(D) ∪ δ(P, g0)D, the identifier g0 references
the default graph of D, and p is the goal literal related to P .

The following theorem states that the above transformations work well.

Theorem 4. SPARQLC is contained in non-recursive safe Datalog with nega-
tion.

Proof. We need to prove that for every SPARQLC query Q = (P,D) it satis-
fies that TS(anss(Q,D)) = ansd(TQ(Q), TD(D)) where anss(Q, D) denotes the
evaluation function JP KD

dg(D). Considering that TQ(Q) is the Datalog query
(Π, p(var(P))) where Π is the Datalog program TD(D) ∪ δ(P, g0)D. We need
to show that for each mapping µ ∈ JP KD

dg(G) there exists substitution θ such
that θ(p(var(P))) ∈ facts∗(Π) and θ = TS(µ). The proof is by induction on the
structure of P .

20

(1) Base case: P is a triple pattern (x1, x2, x3).
I this case δ(P, g) returns the rule p(var(P))← triple(g, x1, x2, x3).
Given a substitution θ, it satisfies that θ(p(var(P))) ∈ facts∗(Π) iff there is a
substitution θ = {xi/vi | xi ∈ var(P)} such that θ(triple(g, x1, x2, x3)) ∈ TD(D).
On the other hand, a mapping µ is in JP KD

G if and only if dom(µ) = var(P) and
µ((x1, x2, x3)) = (v1, v2, v3) ∈ G. Then µ(xi) = vi when xi ∈ var(P). If we
transform µ into a substitution, that is TS(µ) = {xi/vi | xi ∈ var(P)}. Then
θ = TS(µ) and we are done.

Inductive case: Let P1 and P2 be graph patterns. We consider several cases:

(2) P is (P1 ANDP2).
In this case δ(P, g) returns the set of rules
{ p(var(P))← ν1(p1(var(P1))) ∧ ν2(p2(var(P2)))∧

x∈var(P1)∩var(P2)
comp(ν1(x), ν2(x), x),

δ(P1, g), δ(P2, g) }
where dom(ν1) = dom(ν2) = var(P1)∩var(P2) and range(ν1)∩range(ν2) = ∅.
Note that we use functions ν1 and ν2 to rename common variables between
patterns P1 and P2, and we use the renamed variables to simulate the notion
of compatible mappings through the predicate comp.
Given a substitution θ, it satisfies that a fact θ(p(var(P))) ∈ facts∗(Π) iff
θ(ν1(p1(var(P1)))) ∈ facts∗(Π), θ(ν2(p2(var(P2)))) ∈ facts∗(Π), and for each
variable xi ∈ var(P1) ∩ var(P2), θ(comp(ν1(xi), ν2(xi), xi)) ∈ facts∗(Π) i.e.,
θ(xi) = θ(ν1(xi)) = θ(ν2(xi)), or θ(ν1(xi)) = null and θ(xi) = θ(ν2(xi)), or
θ(ν2(xi)) = null and θ(xi) = θ(ν1(xi)).
On the other hand, a mapping µ is in J(P1 ANDP2)KD

G iff µ = µ1 ∪ µ2 such
that µ1 ∈ JP1KD

G , µ2 ∈ JP2KD
G , and µ1 is compatible with µ2 i.e, for each

x ∈ var(P1) ∩ var(P2) it applies that µ1(x) = µ2(x) or µ1(x) is unbounded
or µ2(x) is unbounded.
For induction hypothesis, we have substitutions θ1 = TS(µ1), θ2 = TS(µ2)
such that θ1(p1(var(P1))) ∈ facts∗(Π), θ2(p2(var(P2))) ∈ facts∗(Π)), and for
each x ∈ var(P1) ∩ var(P2) we have that θ1(x) = θ2(x), or θ1(x) is null, or
θ2(x) is null. Considering that TS(µ) = θ1 ∪ θ2 we have that θ = TS(µ) and
we are done.

(3) If P is (P1 UNIONP2).
In this case δ(P, g) returns the set of rules
{p(var(P))← p1(var(P1))

∧
x∈var(P2)∧x/∈var(P1)

Null(x),
p(var(P))← p2(var(P2))

∧
x∈var(P1)∧x/∈var(P2)

Null(x),
δ(P1, g), δ(P2, g) }

Given a substitution θ, it satisfies that θ(p(var(P))) ∈ facts∗(Π) iff either
(a) θ(p1(var(P1))) ∈ facts∗(Π) and x is null for each x ∈ var(P) \ var(P1),

i.e, θ = {x/v | x ∈ var(P1)} ∪ {x/null | x ∈ var(P) \ var(P1)} ; or
(b) θ(p2(var(P2))) ∈ facts∗(Π) and x is null for each x ∈ var(P) \ var(P2),

i.e, θ = {x/v | x ∈ var(P2)} ∪ {x/null | x ∈ var(P) \ var(P2)}.

21

On the other hand, a mapping µ is in J(P1 UNIONP2)KD
G if and only if either

(a) µ = µ1 ∈ JP1KD
G or (b) µ = µ2 ∈ JP2KD

G . For induction hypothesis, we
have that there exist substitutions θ1 = TS(µ1), θ2 = TS(µ2) satisfying that
θ1(p1(var(P1))) ∈ facts∗(Π) and θ2(p2(var(P2))) ∈ facts∗(Π). Assuming that
θ1 = {x/v | x ∈ var(P1)} and θ2 = {x/v | x ∈ var(P2)}. It applies that in
case (a), TS(µ) = θ1 ∪ {x/null | x ∈ var(P) \ var(P1)}; and in case (b),
TS(µ) = θ2 ∪ {x/null | x ∈ var(P) \ var(P2)}. Then, we have that θ = TS(µ)
and we are done.

(4) P is (P1 OPT P2).
In this case δ(P, g) returns the set of rules
{ p(var(P))← p3(var(P3)),

p(var(P))← p1(var(P1))∧¬p′1(var(P1))
∧

x∈var(P2)∧x/∈var(P1)
Null(x),

p′1(var(P1))← p3(var(P3)),
δ(P1, g), δ(P2, g), δ(P3, g) },

where P3 = (P1 ANDP2).
Given a substitution θ, we have that θ(p(var(P))) ∈ facts∗(Π) iff either
(i) θ(p3(var(P3))) ∈ facts∗(Π); or
(ii) θ(p1(var(P1))) ∈ facts∗(Π) and is false that θ(p′1(var(P1))) ∈ facts∗(Π);

that is, if θ = θ1 such that θ1(p1(var(P1))) ∈ facts∗(Π), then for all
θ2(p2(var(P2))) ∈ facts∗(Π) it is false that comp(θ1(x), θ2(x), θ(x)), i.e.,
it applies that θ1(x) 6= θ2(x) for each variable x ∈ var(P1) ∩ var(P2). In
this case, θ(x) is null for each variable x ∈ var(P) \ var(P1).

On the other hand, a mapping µ is in J(P1 OPT P2)KD
G iff either:

(a) µ ∈ JP3KD
G where P3 = (P1 ANDP2); or

(b) µ = µ1 ∈ JP1KD
G such that for all µ2 ∈ JP2KD

G it satisfies that µ1 and µ2

are not compatible. Here µ(x) is unbounded for each x ∈ var(P)\var(P1).
For induction hypothesis, we have substitutions θ1 = TS(µ1) and θ2 = TS(µ2)
satisfying that θ1(p1(var(P1))) ∈ facts∗(Π) and θ2(p2(var(P2))) ∈ facts∗(Π).
Suppose that θ′ = TS(µ). Following definition of µ, we have that:

- In case (a), θ′(p3(var(P3))) ∈ facts∗(Π) (as was showed in (2)).
- In case (b), θ′ = θ1 and θ1 is not compatible with every θ2, that is

θ1(x) 6= θ2(x) for each variable x ∈ var(P1) ∩ var(P2). Additionally,
x/null ∈ θ′ for each x ∈ var(P) \ var(P1).

Considering that (a) corresponds to (i), and (b) corresponds to (ii), then
θ = θ′ = TS(µ) and we are done.

(5) P is (u GRAPH P1) where u ∈ I.
In this case δ(P, g) returns the set of rules
{ p(var(P))← p1(var(P1)),

δ(P1, u) }
Given a substitution θ, we have that θ(p(var(P))) ∈ facts∗(TD(D)∪ δ(P, g))
if and only if θ(p1(var(P1))) ∈ facts∗(TD(D) ∪ δ(P1, u)). On the other hand,
a mapping µ is in JP KD

G if and only if µ ∈ JP1KD
G′ such that G′ = gr(u)D.

In both cases, the active graph identified g has been changed by the graph
identified u. Then by induction hypothesis we have that θ = TS(µ).

22

(6) P is (?X GRAPH P1) where ?X ∈ V .
In this case, for each named graph identified ui in dataset D, we have that
δ(P, g) contains the following two rules:

p(var(P))← p1i(var(P1i)) ∧ graph(?X) ∧ ?X = ui, and
δ(P1i, ui)D.

Considering that P1i is a copy of P1 and using result (5), we can prove that
p(var(P)) ← p1i(var(P1i)) is correct for each named graph ui in dataset
D. Additionally, given that var(P) is ?X ∪ var(P1i), we use the literals
graph(?X) and ?X = ui to assign the respective IRI ui to variable ?X,
then we are changing the active graph to the graph identified by ui. As re-
sult, a substitution θ is in δ(P, g) iff θ is a substitution for a some δ(P1i, ui)
where ui identifies a graph in D. Then we have proved the case.

(7) If P is (P1 FILTER C) and C is an atomic filter constraint.
In this case δ(P, g) returns the set of rules
{ p(var(P))← p1(var(P1)) ∧ cond,

δ(P1, g) },
where cond is a Datalog literal encoding the filter condition C.
Given a substitution θ, we have that θ(p(var(P))) ∈ facts∗(Π) if and only if
θ(p1(var(P1))) ∈ facts∗(Π) and θ(cond) is true.
On the other hand, a mapping µ is in JP KD

G iff µ ∈ JP1KD
G and µ satisfies C.

By induction hypothesis and considering that cond is a Datalog literal equiv-
alent to filter constraint C, it applies that there exists substitution θ = TS(µ)
satisfying that θ(p1(var(P1))) ∈ facts∗(Π) and θ(cond) is true.

(8) If P is (P1 FILTER C) and C is (¬(C1)).
In this case δ(P, g) returns the set of rules
{ p(var(P))← p1(var(P1)) ∧ ¬p4(var(P1)),

δ(P1, g), δ(P4, g) },
where P4 = (P1 FILTER C1).
Given a substitution θ, it satisfies that θ(p(var(P))) ∈ facts∗(Π) if and only
if θ(p1(var(P1))) ∈ facts∗(Π) and is false that θ(p4(var(P1))) ∈ facts∗(Π).
The last condition implies that, if cond1 is the Datalog literal encoding C1

then, θ(cond1) is not true.
On the other hand, we have that a mapping µ is in JP KD

G if and only if
µ ∈ JP1KD

G and it is not true that µ |= C1.
By induction hypothesis and considering that cond1 is the Datalog literal
equivalent to C1, we have that there exists substitution θ = TS(µ) satisfying
that θ(p1(var(P1))) ∈ facts∗(Π) and θ(cond1) is not true.

(9) If P is (P1 FILTER C) and C is (C1 ∧ C2).
In this case δ(P, g) returns the set of rules
{ p(var(P))← p1(var(P1)) ∧ ¬p′(var(P1)),

p′(var(P1))← p1(var(P1)) ∧ ¬p′′(var(P1)),
p′′(var(P1))← p4(var(P1)) ∧ p5(var(P1)),
δ(P1, g), δ(P4, g), δ(P5, g) }

where P4 = (P1 FILTER C1) and P5 = (P1 FILTER C2).
Note that the graph pattern (P1 FILTER(C1 ∧ C2)) can be rewritten as

23

((P1 FILTER C1)AND(P1 FILTER C2)) (it is showed in the rule for predi-
cate p′′ and by the patterns P4 and P5). This transformation is true under
set-semantics, but it fails when we consider bag-semantics because it dupli-
cates the bag of solutions. To solve this problem, we consider a double nega-
tion of the filter condition, that is we rewrite C to (¬(¬C)) (as is showed
by the rules for predicates p and p′). Given that negated literals does not
increase solutions, we will have only solutions from predicate p1. Then we
have proved the case.

(10) If P is (P1 FILTER C) and C is (C1 ∨ C2).
In this case δ(P, g) returns the set of rules
{ p(var(P))← p1(var(P1)) ∧ ¬p′(var(P1)),

p′(var(P1))← p1(var(P1)) ∧ ¬p′′(var(P1)),
p′′(var(P1))← p4(var(P1)),
p′′(var(P1))← p5(var(P1)),
δ(P1, g), δ(P4, g), δ(P5, g) }

where P4 = (P1 FILTER C1) and P5 = (P1 FILTER C2).
Note that the graph pattern (P1 FILTER(C1 ∨ C2)) can be rewritten as
((P1 FILTER C1)UNION(P1 FILTER C2)) (it is showed by the rules for pred-
icate p′′ and by the patterns P4 and P5). Similar to (9), we apply a double
negation of the filter condition C (as is showed by the rules for predicates p
and p′) to solve the problem for bag-semantics. This proved the case.

Note 7. Given a graph pattern P , the transformation δ(P, g) preserves the bag
semantics of the SPARQL WG specification. Consider the cardinality m of a
solution s for P (and the equivalent solution for δ(P, g)). It can be checked that:
in case (1), the value of m is 1 because each triple occurs once in the active
graph; in case (2), m is the product of the cardinalities for s in the bags of
solutions for 〈〈P1〉〉 and 〈〈P2〉〉; in case (3), m is the sum of the cardinalities for
s in the bags of solutions for 〈〈P1〉〉 and 〈〈P2〉〉; in case (4), m is given by either
the product of cardinalities for s in the bags of solutions for 〈〈P1〉〉 and 〈〈P2〉〉, or
the cardinalities for s in the bag of solutions for 〈〈P1〉〉; in case (5), m is given
by the cardinality of s in the bag of solutions for named graph u; in case (6), m
is given by the sum of cardinalities for s in the bag of solutions for each named
graph in the dataset; in cases (7),(8),(9), and (10), m is given by the cardinality
of s in the bag of solutions for P1.

6.2 From Datalog to SPARQLC

To prove that the Datalog language Ld = (Qd,Dd,Sd, ansd) is contained in
the SPARQLC language Ls = (Qs,Ds,Ss, anss), we define transformations T ′Q :
Qd → Qs, T ′D : Dd → Ds, and T ′S : Sd → Ss. That is, T ′Q transforms a Datalog
query into an SPARQLC query, T ′D transforms a set of Datalog facts into an
RDF dataset, and T ′S transforms a set of Datalog substitutions into a set of
SPARQLC mappings.

24

Datalog facts as an RDF Dataset
Given a Datalog fact f = p(c1, ..., cn), consider function desc(f) which returns
the set of triples { (:b,predicate,p), (:b,rdf: 1,c1),. . . ,(:b,rdf: n,cn) }, where
:b is a fresh blank node. Given a set of Datalog facts F , we have that T ′D(F)
returns an RDF dataset with default graph G0 = {desc(f) | f ∈ F}, where
blank(desc(fi)) ∩ blank(desc(fj)) = ∅ for each fi, fj ∈ F with i 6= j.

Datalog substitutions as SPARQLC mappings.
Given a set of substitutions Θ, the transformation T ′S(Θ) returns a set of map-
pings defined as follows: for each substitution θ ∈ Θ there exists a mapping
µ ∈ T ′S(Θ) satisfying that, if x/t ∈ θ then x ∈ dom(µ) and µ(x) = t.

Datalog rules as SPARQLC graph patterns
Let Π be a Datalog program, and L be a literal p(x1, . . . , xn) where p is a
predicate in Π and each xi is a variable. We define the function gp(L)Π which
returns a graph pattern encoding the program (Π,L), that is, the fragment of
the program Π used for evaluating literal L.

The translation works intuitively as follows:

(a) If predicate p is extensional, then gp(L)Π returns the graph pattern
((?Y,predicate, p) AND(?Y, rdf: 1, x1) AND · · ·AND(?Y, rdf n, xn)),
where ?Y is a fresh variable.

(b) If predicate p is intensional, then for each rule in Π of the form

L← L1 ∧ · · · ∧ Ls ∧ ¬Ls+1 ∧ · · · ∧ ¬Lt ∧ Leq
1 ∧ · · · ∧ Leq

u ,

where each Li is a predicate formula and each Leq
k is a literal either of the

form t1 = t2 or ¬(t1 = t2), it applies that gp(L)Π returns a graph pattern
with the structure

(((· · · ((gp(L1)Π AND · · ·AND gp(Ls)Π)
MINUSgp(Ls+1)Π) · · ·) MINUSgp(Lt)Π)

FILTER(Leq
1 ∧ · · · ∧ Leq

u)). (2)

The formal definition of gp(L)Π is Algorithm 3.

Datalog queries as SPARQLC queries.
Given a Datalog query Q = (Π,L) where Π is a Datalog program and L is
the goal literal. The function T ′Q(Q) returns the SPARQLC query (P,D) where
P is the graph pattern gp(L)Π and D is an RDF dataset with default graph
G0 = T ′D(facts(Π)).

25

Algorithm 3 Transformation of Datalog rules into SPARQLC graph patterns
1: //Input: a literal L = p(x1, . . . , xn) and a Datalog program Π
2: //Output: a SPARQLC graph pattern P = gp(L)Π

3: P ← ∅
4: if predicate p is extensional in Π then
5: Let ?Y be a fresh variable
6: P ← ((?Y, predicate, p)AND(?Y, rdf: 1, x1)AND · · ·AND(?Y, rdf n, xn))
7: else if predicate p is intensional in Π then
8: for each rule r ∈ Π with head p(x′1, . . . , x

′
n) do

9: P ′ ← ∅
10: C ← ∅
11: Let r′ = ν(r) where ν is a substitution such that ν(x′i) = xi

12: for each positive literal q(y1, . . . , ym) in the body of r′ do
13: if P ′ = ∅ then P ′ ← gp(q)Π

14: else P ′ ← (P ′ AND gp(q)Π)
15: end for
16: for each negative literal ¬q(y1, . . . , ym) in the body of r′ do
17: P ′ ← (P ′ MINUS gp(q))
18: end for
19: for each equality formula t1 = t2 in r′ do
20: if C = ∅ then C ← (t1 = t2)
21: else C ← C ∧ (t1 = t2)
22: end for
23: for each negative literal ¬(t1 = t2) in r′ do
24: if C = ∅ then C ← ¬(t1 = t2)
25: else C ← C ∧ ¬(t1 = t2)
26: end for
27: if C 6= ∅ then P ′ ← (P ′ FILTER C)
28: if P = ∅ then P ← P ′

29: else P ← (P UNION P ′)
30: end for
31: end if
32: return P

The following theorem states that the above transformations work well.

Theorem 5. nr-Datalog¬ is contained in SPARQLC.

Proof. We need to prove that for every Datalog query Q = (Π,L) it satisfies that
T ′S(ansd(Q, facts(Π)) = anss(T ′Q(Q), T ′D(facts(Π))). Considering that anss(· · ·)
denotes function J·K, we will show that T ′S(ansd(Q, facts(Π)) = Jgp(L)ΠKD

dg(D)

where dg(D) = T ′D(facts(Π)).
The proof is by induction on the level l of the program (Π,L). The level of a

program (Π,L) is the number l(L) where: l(¬L) = l(L); l(L) = 0 if L contains
an extensional predicate; l(L) = 1 + maxi(l(Li)) if L contains an intensional
predicate and Li are all literals which occur in the body of any rule with head L.
(Note that the function is well defined because the Datalog programs considered
are not recursive.)

26

Base case: l(Π,L) = 0 .
Let L = p(x1, . . . , xn). In this case p is extensional and L matches line 4 of
Algorithm 3. Hence gp(L)Π returns the graph pattern

P = ((?Y,predicate, p) AND(?Y, rdf: 1, x1) AND · · ·AND(?Y, rdf: n, xn)).

Now, a mapping µ is in JP KD
dg(D) if and only if for every triple pattern t in P it

satisfies that µ(t) ∈ dg(D).
On the other hand, a substitution θ is in ansd((Π,L), facts(Π)) if and only

if θ(L) ∈ facts(Π) (Note that we only consider the initial database facts(Π)
because predicate p is extensional).

Note that T ′S maps bijectively substitutions from ansd((Π,L), facts(Π)) to
mappings in Jgp(L)ΠKD

dg(D). Specifically, for each variable v ∈ L it satisfies that
θ(v) = µ(v). This proves the basic case.

Inductive step: l(Π,L) = n > 0 .
Recall that L = p(x1, . . . , xn) and assume that Πp denotes the set of rules of
Π having predicate p in the head. In this case, L matches line 7 of Algorithm 3
and gp(L)Π returns the graph pattern

(gp(Lr1)Π UNION · · ·UNIONgp(Lrm)Π), (3)

where gp(Lri)Π returns the graph pattern corresponding to rule ri ∈ Πp. In this
case it clearly holds that Jgp(L)ΠKD

dg(D) =
⋃

iJgp(Lri)ΠKD
dg(D).

On the other hand, a substitution θ is in ansd((Π,L), facts(Π)) iff there is a
rule ri ∈ Πp such that θ′(ri) is true in Π. Considering (3), it is enough to prove
that for each particular rule ri ∈ Πp it satisfies that:

T ′S(ans((Π,Lri), facts(Π))) = Jgp(Lri)KD
dg(D). (4)

To prove this, assume that the rule ri has the following general structure:

L ← L1 ∧ · · · ∧ Ls ∧ ¬Ls+1 ∧ · · · ∧ ¬Lt ∧ Leq
1 ∧ · · · ∧ Leq

u , (5)

where each Lj is a predicate formula (positive or negative) and each Leq
k is a

literal of the form t1 = t2 or ¬(t1 = t2).
Let us compute the SPARQLC evaluation first. We have that gp(L)Π returns

a graph pattern with the structure

(((· · · ((gp(L1)Π AND · · ·ANDgp(Ls)Π)
MINUSgp(Ls+1)Π) · · ·) MINUSgp(Lt)Π)

FILTER(Leq
1 ∧ · · · ∧ Leq

u)), (6)

Observe that a mapping µ is in Jgp(L)ΠKD
dg(D) if and only if:

(i) for each Li with 1 ≤ i ≤ s, there exists a mapping µ′i ∈ Jgp(Li)ΠKD
dg(D)

satisfying that µ and µ′i are compatible;

27

(ii) for each Lj with s < j ≤ t, there exists no mapping µ′′j ∈ Jgp(Lj)ΠKD
dg(D)

satisfying that µ and µ′′j are compatible; and
(iii) for each literal Leq

k , it satisfies that µ(t1) = µ(t2) when Leq
k is t1 = t2, and

µ(t1) 6= µ(t2) when Leq
k is ¬(t1 = t2) (suppose that µ(ti) = ti where ti is a

constant).

Now, let us compute the Datalog evaluation. A substitution θ is in the result
of ansd((Π,L), facts(Π)) if and only if θ(L) ∈ facts∗(Π). This means that:

(a) for each Li with 1 ≤ i ≤ s, there exists a substitution θ′i in the result of
ansd((Π,Li), facts(Π)) satisfying that θ(x) = θ′(x) for each variable x ∈
var(θ′) ∩ var(θ′i), .

(b) for each Lj with s < j ≤ t, there exists no substitution θ′′j in the result of
ansd((Π,Lj), facts(Π)) satisfying that θ(x) = θ′′(x) for each variable x ∈
var(θ) ∩ var(θ′′j).

(c) for each literal Leq
k , it satisfies that θ′(t1) = θ′(t2) when Leq

k is t1 = t2, and
θ′(t1) 6= θ′(t2) when Leq

k is ¬(t1 = t2) (assume that θ′(ti) = ti where ti is a
constant).

Note that (because Π is not recursive), for each pair of literal Li, Lj in rule
ri, it holds that l(Π,Li) < l(Π,L) and l(Π,Lj) < l(Π,L). Hence, by induc-
tion hypothesis we have that T ′S(ansd((Π,Li), facts(Π))) = Jgp(Li)ΠKD

dg(D) and
T ′S(ansd((Π,Lj), facts(Π))) = Jgp(Lj)ΠKD

dg(D). These identities plus the condi-
tions (i), (ii), (iii) and (a), (b), (c) above, show the bijections between maps
µ ∈ Jgp(L)ΠKD

dg(D) and substitutions θ ∈ ans((Π,L), Dd), that is:

T ′S(ans((Π,L), facts(Π))) = Jgp(L)ΠKD
dg(D).

This concludes the proof.

7 Conclusions

We have studied the expressive power of SPARQL. Among the most important
findings are the definition of negation, the proof that non-safe filter patterns are
superfluous, the proof of the equivalence between SPARQLWG and SPARQLC.

From these results we can state the most relevant result of the paper:

Theorem 6 (main). SPARQLWG has the same expressive power as Relational
Algebra under bag semantics.

This result follows from the well known fact (for example, see [1] and [5])
that relational algebra and non-recursive safe Datalog with negation have the
same expressive power, and from theorems 2, 3, 4 and 5.

Relational Algebra is probably one of the most studied query languages, and
has become a favorite by theoreticians because of a proper balance between
expressiveness and complexity. The result that SPARQL is equivalent in its ex-
pressive power to Relational Algebra, has important implications which are not

28

discussed in this paper. Some examples are the translation of some results from
Relational Algebra into SPARQL, and the settlement of several open questions
about expressiveness of SPARQL, e.g., the expressive power added by the op-
erator bound in combination with optional patterns. Future work includes the
development of the manifold consequences implied by the Main Theorem.

Acknowledgments. R. Angles was supported by Mecesup project No. UCH0109.
R. Angles and C. Gutierrez were supported by FONDECYT project No. 1070348.
The authors wish to thank the reviewers for their comments.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. R. Cyganiak. A relational algebra for sparql. Technical Report HPL-2005-170, HP
Labs, 2005.

3. T. Furche, B. Linse, F. Bry, D. Plexousakis, and G. Gottlob. RDF Querying:
Language Constructs and Evaluation Methods Compared. In Reasoning Web,
number 4126 in LNCS, pages 1–52, 2006.

4. G. Klyne and J. Carroll. Resource Description Framework (RDF) Concepts and
Abstract Syntax. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/,
February 2004.

5. M. Levene and G. Loizou. A Guided Tour of Relational Databases and Beyond.
Springer-Verlag, 1999.

6. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. In
Proceedings of the 5th International Semantic Web Conference (ISWC), number
4273 in LNCS, pages 30–43. Springer-Verlag, 2006.

7. J. Pérez, M. Arenas, and C. Gutierrez. Semantics of SPARQL. Technical Report
TR/DCC-2006-17, Department of Computer Science, Universidad de Chile, 2006.

8. A. Polleres. From SPARQL to rules (and back). In Proceedings of the 16th Inter-
national World Wide Web Conference (WWW), pages 787–796. ACM, 2007.

9. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. http:

//www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/, January 2008.
10. S. Schenk. A sparql semantics based on datalog. In 30th Annual German Con-

ference on Advances in Artificial Intelligence (KI), volume 4667 of LNCS, pages
160–174. Springer, 2007.

29

