
Benchmarking database systems for social network

applications ∗

Renzo Angles

Department of Computer Science, Universidad de Talca

Department of Computer Science, VU University Amsterdam

rangles@utalca.cl

Arnau Prat-Pérez

DAMA-UPC

Universitat Politécnica de Catalunya

aprat@ac.upc.edu

David Dominguez-Sal

Sparsity Technologies

david@sparsity-technologies.com

Josep-LLuis Larriba-Pey

DAMA-UPC

Universitat Politécnica de Catalunya

larri@ac.upc.edu

Abstract

Graphs have become an indispensable tool for the analysis of linked
data. As with any data representation, the need for using database
management systems appears when they grow in size and complexity.
Associated to those needs, benchmarks appear to assess the perfor-
mance of such systems in specific scenarios, representative of real use
cases.

In this paper we propose a microbenchmark based on social net-
works. This includes a data generator that synthetically creates social
graphs, and a set of low level atomic queries that model parts of the

∗Technical report of the paper presented at the Graph Data-management Experiences
and Systems (GRADES) Workshop, co-located with SIGMOD/PODS. June 2013

1



behavior of social network users. In order to understand how differ-
ent data management paradigms are stressed, we execute the bench-
mark over five different database systems representing graph (Dex and
Neo4j), RDF (RDF-3X) and relational (Virtuoso and PostgreSQL)
data management. We conclude that reachability queries are those
that put all the database systems into more difficulties, justifying them-
selves, and making them good candidates for more complex bench-
marks.

1 Introduction

During the last years, there has been a huge increase in the number of
applications that query and manipulate graphs. Data from social networks,
protein-to-protein networks and the Web, just to cite a few, benefit from
being modeled as a graph. Due to the increase in size and complexity of
these data sources, it has been essential to have database systems which can
handle large graph datasets efficiently.

Although traditional relational database systems can represent a graph
as a set of tables, they neither offer a natural interface nor efficient opera-
tions. Graph queries, such as finding a path, require complex SQL expres-
sions and produce execution plans with a large number of join operations
that can be computationally expensive [3].

Both graph and RDF databases offer more natural graph interfaces than
SQL. Graph databases provide the programmer with operations such as
getting the neighbors of a node. These systems, such as Dex and Neo4j,
offer efficient APIs for these operations and graph oriented query languages
(e.g., Cypher). On the other hand, RDF databases store graphs as collec-
tions of statements subject-predicate-object called RDF triples. SPARQL
is the standard query language for RDF databases, which is based on graph
pattern expressions.

Although there are no standard performance benchmarks to assess quan-
titatively the efficiency of database systems on social network datasets, there
are initiatives, like LDBC1, that work on the design of industry oriented
benchmarks. Form the academic point of view, studies on the design frame-
work for graph data base benchmarks including social networks have been
performed in the recent years, describing the types of queries that the use
cases may require, and showing that the social network use case is the rich-
est in variety [6]. LinkBench [2], is a recent example of a social network

1Linked Data Benchmark Council is sponsored by the European Community under
ICT-FP7 http://www.ldbc.eu

2



benchmark based on Facebook. In some cases, the load time of the graph
is measured [2, 5] and queries based on multi-hop traversals [2, 5] or on the
complete traversal of a graph [10] have been used as the paradigm to mea-
sure the performance of memory intensive operations. In all those cases, the
authors focus on graph topology queries on simple graph schemas, missing
some of the characteristics of a specific application such as social networks.

Here we focus on the social network use case, benefiting from its richness
to propose a simple microbenchmark that contains very common operations
in such networks. The queries of the benchmark represent typical social
network usages, such as getting the friends of a friend, looking for similar
like pages or finding shortest paths between persons. This benchmark can
be used not only for assessing the performance of a graph implementation,
but also to build more complex environments. For example, the proposed
queries can be combined to build logs of interaction of the users. The queries
proposed here are envisioned as the basic primitives from which one could
construct more complex graph oriented queries such as page rank, influence
or recommendation queries. The benchmark proposes an easy to extend
framework that can be implemented by any database system. We also de-
scribe the basic social network schema that can be populated with social
network-like data, which mimics real-world data distributions found in so-
cial networks, such as Facebook. This generation procedure creates both
the graph and the query set instances as a data stream, which can be used
to build large graphs without large memory requirements.

In this paper, we analyze the proposed queries in order to understand the
complexity of social network applications. We execute the microbenchmark
on five databases (Dex, Neo4j, RDF-3X, Virtuoso and PostgreSQL) and
compare the impact of the queries on those systems. We conclude that
graph reachability queries are the most challenging query family in terms
of time complexity. We observe that relational databases have performance
struggles to compute long paths for such queries and graph and RDF data-
bases show better performance.

The rest of the paper is structured as follows. In Section 2, we present the
microbenchmark by describing the data schema, the data generation process,
the queries, the generation of test data, and the performance metrics. In
Section 3 we describe the experimental setup. In Section 4 we show and
discuss the results. Finally, in Section 5 we present some conclusions.

3



Person Webpagelike

friend

pid

name

age (optional)

location (optional)

wpid

url

date

Figure 1: The data schema of the microbenchmark graph.

2 Microbenchmark description

This section presents the microbenchmark including the graph data schema,
the data generation method, the query set, test data selection, and the
performance metrics.

2.1 Graph data schema

Our data model defines two types of entities as shown in Figure 1: person
and webpage. Persons are linked to other persons by a “friend” undirected
relationship, and are linked to webpages by a “like” directed relationship.
The attributes of a person are the pid (person identifier), the name, and
two optional fields, the age and the location. A webpage has attributes
wpid (webpage identifier), URL, and optionally a creation date. Note that
an instance of this schema is an attributed bipartite graph with directed and
undirected edges with two types of nodes and edges.

2.2 Graph data generation.

Stream edge data generator. We have developed a general-purpose
graph data generator based on the Recursive Matrix (R-Mat) model [5].
The basic idea behind R-Mat is a recursive procedure to add edges in the
adjacency matrix of the graph (starting from an empty matrix), until a
given number of edges have been added. The recursive procedure subdivides
the adjacency matrix of the graph into four partitions (named a, b, c, d)
where the selection of one partition follows a probability ρx (e.g., ρa = 0.55,

4



ρb = 0.15, ρc = 0.1 and ρd = 0.2), and adds an edge at the end of the
recursion (i.e. when a 1× 1 matrix has been reached).

We propose a strategy which is based on simulating the R-Mat recursion
process. We store the distribution of edges in an array, and construct the
graph using such distribution. The advantage of this approach is that it
allows the sequential generation of nodes and edges in a streamed fashion,
which increases the scalability of the generation process. The explanation
is given as follows.

Assume that G denotes the graph to be generated, N the number of
nodes, and E the number of edges. First, we construct an array D of length
N , such that the value of D[i] defines the number of edges (degree) of node
i, for 1 ≤ i ≤ N .

Second, we simulate the R-Mat recursive procedure E = N logN times2,
but we do not materialize the edge. At the end of each recursion we incre-
ment the value of both D[s] and D[t] when an edge (s, t) is added. If G
is directed, the value of D[t] is not incremented. After the second step, D
contains the distribution of degrees for all the nodes in G.

Third, the edges of G are materialized by traversing D. For each node
i, we generate a sequence of D[i] edges of the form (i, j) such that j > i and
D[j] > 0. If G is directed, then the latter condition does not apply. For each
generated edge, we decrease the value of D[i] by one. If G is undirected, we
also decrease the value of D[j]. Note that this procedure avoids generating
repeated edges while the original R-Mat algorithm did not avoid such case.

Since the basic R-Mat algorithm produces bumpy histograms, we smooth
them by updating the ρ probabilities at each step of the recursion, as sug-
gested in [5]. The probability ρx at stage i of the recursion is defined as
ρix = abs(ρi−1

x + (0.25 − ρ0x) / log2 N). Following this procedure, the prob-
ability in the last recursion step of the algorithm is ρx = 0.25. Note that
each probability ρx is updated log2N times according to the height of the
recursion tree.

Social data generation. The generation of social network data is based
on the use of information published by current social network applications,
for example the Facebook Annual Report of year 2012 [7]. Therefore, we try
to produce synthetic data having characteristics present in real-life social
networks.

The number of users in Facebook is significantly larger than the number

2Studies on the evolution of real networks, and in particular social networks, have
shown that the number of edges grows super-linearly in the number of nodes N and below
N

2 [8].

5



of webpages. To simulate this, we set 80% of the nodes as persons and
20% as webpages. The identifier of a person node (i.e., the attribute pid) is
an integer value in the range [1, N × 0.8], where N is the number of nodes
in the graph. The names of persons and locations are selected randomly
from dictionaries including 5494 first names, 88799 last names, and 656
locations. Hence, the probability of having duplicated pairs of these two
attributes depends on the size of the graph and the distributions used. The
occurrence of attributes age and location follows probabilities 0.6 and 0.3
respectively. The age of a person is a random integer between 10 and 73.
The identifier of a node webpage (i.e., the attribute wpid) is an integer in
the range [(N × 0.8) + 1, N ]. The attribute URL follows the pattern http:

//www.site.org/webpageID.html where ID is the wpid of the webpage.
The probability of including a random creation date for a webpage is 0.6.

Resembling the data generator of the benchmark for the Facebook social
graph [2], we use the general-purpose method for graph generation to obtain
power-law distributions for the edges corresponding to relationships friend
and like.

2.3 Queries

We perform a selection of domain specific queries for the microbenchmark.
Our approach is based on the user interaction with Facebook to identify
atomic actions that are mapped to the queries of the benchmark. Such
interaction includes an analysis of the data displayed in the user profile
page, the user wall page, and the profile page of a user’s friend.

A microbenchmark is used to evaluate the individual performance of
atomic operations (such as joins and aggregations in relational databases),
rather than more complex queries [4]. In the context of graphs we find
several micro-queries which can be considered atomic and we group them
into adjacency, reachability, pattern matching and summarization queries
[1]. Also, we add select queries that are relevant in the context of social
networks.

Based on an analysis of the user interaction with a social network plat-
form, we defined the query mix shown in Table 1. Query Q1 represents a
selection given an attribute value. Queries Q2 and Q3 can be used to test
the efficiency when obtaining the adjacent nodes of an edge. They are use-
ful to compare the performance for querying incoming and outgoing edges.
Queries Q5, Q6 and Q7 are reachability queries oriented to evaluate the
support of a simple path expression with fixed path length. Although the
length of the paths is fixed, the direction of the edges can influence the

6



Q Description Type

1 Get all the persons having a name N Select
2 Get all the persons who like a given webpage W Adjacency
3 Get the webpages that person P likes Adjacency
4 Get the name of the person with a given PID Select
5 Get the friends of the friends of a given person P Reachability
6 Get the webpages liked by the friends of a given person P Reachability
7 Get persons that like a webpage which a person P likes Reachability
8 Is there a connection (path) between persons P1 and P2? Reachability
9 Get the shortest path between persons P1 and P2 Reachability
10 Get the common friends between persons P1 and P2 Pattern matching
11 Get the common webpages that persons P1 and P2 like Pattern matching
12 Get the number of friends of a person P Summarization

Table 1: The queries of the microbenchmark with their description and
classification.

performance of a system. Moreover, the evaluation of adjacency queries is
strongly influenced by the intermediate results (i.e., the degree of the nodes).

The support for recursive queries is the objective of queries Q8 and Q9.
Query Q8 is simpler than query Q9 because the former requests a connectiv-
ity test and Q9 searches the shortest path. However, in our experiments we
did not detect that any of the systems under test performed such optimiza-
tion. Note that recursive queries are well-know difficult-to-solve examples
for database systems implementing join operations [10].

Queries Q10 and Q11 are common graph pattern matching queries. Note
that a simple graph pattern (Q11) can be converted into a complex one
(e.g., the cyclic pattern of Q10) just by changing the direction of the edges.
Finally, query Q12 is an example of a common aggregate operation that
most database systems support.

Note that these essential queries can be composed and/or grouped in or-
der to describe more complex queries. Additionally, the order of the queries
can be controlled to construct a query mix that reflects the workflow of a
user interacting with a social network platform. Such composite operations
are out of the scope of the present article.

2.4 Test data generation

In addition to the social network data file, the generator produces an XML
file containing test data, that is data to be used in the creation of query
instances. For example, if the benchmark issues 10,000 instances of Q1,

7



then the data file contains a list of 10,000 names.
The test data is grouped as follows: IDs of people (used for queries Q3,

Q4, Q5, Q6, Q7, Q12); names of people (used for query Q1); IDs of webpages
(used for query Q2); pairs of IDs <person,person> such that these two
people are connected by a “friend” relationship (used for query Q10); pairs
of IDs <person,webpage> such that there is a relationship “like” between
the person and the webpage; and pairs of IDs <person,person> such that
there is a path between them (used for queries Q8 and Q9).

The selection of test data runs in parallel to the graph data generation
process. Hence, the data is generated as a stream of query instances. For
all queries but Q8-Q9, the selection is based on dividing the data space in
equally spaced slices of the stream, taking a sample at the beginning of each
slice. Considering that the data space is the set of nodes ordered by degree,
this method ensures that we obtain test nodes of several degrees.

In the case of Q8-Q9, the process selects as many nodes as query in-
stances are needed, which are “seeds for the paths”, before reading the
stream. Then, the process will connect to the stream of edges and will sim-
ulate random walks starting from the seeds. Each edge will extend a path if
any of the nodes is the end of a seeded path, otherwise the edge is ignored.
In Appendix B we show the distribution of such paths.

2.5 Performance metrics and Indexes

As an academic benchmark, we only consider execution times, and not price
per transaction or transactions per unit of time. In this paper, we measure
the response time as a metric.

Data loading Time. The time required to load the data from the
source file. This metric includes any time spent by the system to build
index structures and statistical data.

Query execution time. This is the central performance metric of the
benchmark. It refers to the time spent by a database system to execute a
single query. The execution time of a query Q is given by the average time
of executing several instances of Q.

Data indexes. Since the benchmark can be implemented in several
environments, it allows indexes for any of the data attributes and relations.
We do not limit the type of indexes created as long as their construction
time is accounted during the graph load time.

8



3 Experimental setup

The database systems selected cover graph, RDF and relational databases.
The graph databases chosen are Dex (v4.7) [6] and Neo4j (v1.8.2 Commu-
nity). As a representative of RDF stores, we chose RDF-3X [9]. We chose
PostgreSQL (v9.1) and Virtuoso (7.0) as representatives of relational data-
bases. The first is a row based database, while the second is a column store
with extensions for expressing graph-like queries in SQL.

The benchmark was implemented for all the tested systems on Java 1.6.
The test-drivers for Dex and Neo4j were implemented by using their re-
spective Java APIs, hence the database is embedded into the application.
We have two different implementations for Neo4j, named NeoAPI and Neo-
Cypher. In NeoAPI, the queries were implemented by using the query func-
tions of the API. In NeoCypher, the queries were expressed in the Cypher
query language. RDF-3X, Virtuoso and PostgreSQL were evaluated as sys-
tem services through the corresponding Java drivers. The query languages
SQL and SPARQL were used in relational and RDF databases respectively.
In the case of Virtuoso, we use the TRANSITIVE extension to implement
graph traversals by means of transitive queries. We use prepared statements
in NeoCypher, Virtuoso and PostgreSQL (i.e., each query was precompiled
and parameterized to save the overhead of compilation).

The social graph schema was modeled in relational databases with the
following tables: Person(id, name, age, location), Webpage(id, url, creation),
Friend(pid1, pid2) and Like(pid, wpid). We created indexes for primary keys
and attributes, according to the query requirements of the benchmark. For
RDF, we generate URIs for nodes and create RDF triples for attributes and
edges. Note that we measure the systems with the default configuration
provided by the vendor, which means that they might achieve better results
if consciously tuned.

We have tested the systems against graphs ranging from 1K nodes to
10M nodes. The datasets used in this paper are described in Appendix A.
All systems were able to load the graphs at a speed of 50k-100k objects per
second after using bulk loading for RDF-3X, PostgreSQL and Virtuoso, and
API loaders for Dex and Neo4j. In this paper, we will not focus on the load
time of the systems.

Due to space restrictions, in this paper we show the results for six out of
the twelve queries. The detailed results will also be available online in the
website of the authors3. We have chosen Q1, Q3, Q6, Q9, Q11 and Q12 as

3http://ing.utalca.cl/~rangles/gdbench

9



representatives of each of the query types described in Section 2. For each
query, we run 10K query instances and we report the average execution time
of three consecutive runs. In order to obtain measures similar to those of a
working server, the benchmark executes a hot warm-up run with the same
query instances and parameters as the main three runs just before them.

To run the benchmark, we have used a computer with the following
characteristics: Intel Xeon E5530 CPU at 2.4 Ghz, 32GB of Registered ECC
DDR3 memory at 1066 Mhz, a 1Tb hard drive with an ext3 file system. The
operating system was a Linux Debian with 2.6.32-5-amd64 kernel.

4 Experimental results

Figure 2 shows the results obtained by the different systems on the selected
queries. Broadly speaking, better performance results are obtained on graph
databases compared with relational or RDF technology. Among the test im-
plementations, Dex and Neo4j executed the queries in the shortest time and
show similar scalability profiles, though Dex is the fastest overall. Further-
more, the introduction of a graph query language in the benchmark is not
a prohibitive cost. In general, the results of Neo4j when using the Cypher
query language are slower than the API counterpart, but the scalability is
similar to the native implementation.

According to the results presented in Figure 2, the queries that stress
more all the database systems are Q6 and Q9 which address reachability.
While all the systems scale well independently of the graph size for non-
reachability queries, the execution time for Q6 and Q9 increases significantly
with the number of objects in the graph.

One interesting aspect to consider is how the execution times of the
query instances vary with respect to the characteristics of the parameters
of the query. For instance, we have analyzed the impact of the degree of
the source node in query Q6 (i.e., the number of friends of the source node
person). Figure 3 shows the execution times for the different instances of
Q6, for the graph with 10M of nodes, for each of the systems. Based on the
degree of the source node, we have classified the instances in three groups:
degree between 1 and 10; between 11 and 100; and between 101 and 1000
(the degree distribution of the source nodes used in query Q6 is shown
in Appendix B). We observe that the execution time of the instances is
dependent on the degree of the node for all the tested systems.

In the case of Q9, which is the shortest path query, we see that graph
databases obtain the best results. This shows that Dex and Neo4j exploit

10



their graph-oriented structures, plus a good implementation of the breath-
first search algorithm (as described in the documentation of the systems
and confirmed by the developers). On the other side, we see that RDF-3X,
Virtuoso and PostgreSQL have severe scalability problems, showing that
relational and RDF databases are less specialized for path-traversal oriented
graph queries.

In order to better understand the behavior of the different systems when
computing query Q9, the average cost per path length taken by each data-
base system is shown in Figure 4, and the path length distributions of the
shortest-path queries for different graph sizes is shown in Figure 5. Figure 4
shows that all the database systems follow a similar trend: the larger the
graph and the longer the path to compute, the larger is the time needed to
execute the query. The query workload for Q9 is dominated by short paths
(i.e., one and two hops, as seen in Figure 5). This masks the deteriorat-
ing performance of PostgreSQL and RDF-3X for long paths, as shown in
Figure 2 and Figure 4.

Looking at PostgreSQL, we see a large variability for the largest graphs
in Q9 as shown in Figure 2. PostgreSQL is very sensitive to the length of
the paths in the query instance set. When these paths are up to three hops
long, the system scales well. However, with paths of size four or more, the
time needed for the computation increases significantly. The explanation for
this behavior is a consequence of the implementation of the shortest-path in
SQL. Graph traversal queries in SQL imply the generation of query plans
with recursive joins. The reported implementation (which was the fastest
in PostgreSQL) is a sequence of six SQL queries, each one asking for a path
of a given length, from one to six. An alternative implementation is the
usage of the WITH RECURSIVE operator that facilitates the traversal of
hierarchies. However, the current implementation computes all the paths
and does not stop once a path is found. Since many instances of Q9 contain
short paths, the former implementation is more efficient.

Although Virtuoso is not as efficient as graph databases, it exhibits bet-
ter scalability compared to PostgreSQL, thanks to the use of transitive sub-
queries implemented by means of the TRANSITIVE operator. Although
this operator is not really optimized for memory efficiency (issue confirmed
by the developers of Virtuoso), it allows to stop the evaluation when the
first solution is found. This feature can explain the best behavior in com-
parison with PostgreSQL. In Appendix C we discuss results of evaluating
PostgreSQL and Virtuoso using stored procedures.

RDF-3X shows a very good performance as long as the paths are just
one hop long. However, for paths longer than one, its performance decreases

11



significantly as long as the size of the database increases, standing between
Virtuoso and PostgreSQL in terms of performance. An important issue with
the evaluation of RDF databases is the cost of translating between external
(URIs) and internal identifiers. In the simpler queries, the execution time
can be strongly influenced by such translation.

5 Conclusions and Future Work

In this paper, we have proposed and described a microbenchmark for data-
base systems based on social networks. The benchmark proposes and im-
plements a graph generator to synthetically generate graphs with social net-
work characteristics like Facebook, and a set of atomic queries that mimic
the typical usages in social network applications.

The query set includes several types of queries that are common in social
networks: selection, adjacency, reachability, pattern matching and summa-
rization queries as part of more complex queries or actions by the user. All
database systems tested in the paper were able to complete the queries in a
reasonable time with the exception of the reachability queries, which were
found to be the most stressful queries for all the systems. The relational
database systems were not able to compute those queries in a reasonable
time when the number of hops for the traversal was larger than 4. Overall,
graph databases benefit from the benchmark for all the query types.

In the near future, we will propose a new benchmark based on the queries
of this work. This new benchmark will stress the concurrent user sessions
that social networks have to process. One such new query will be a com-
posite of several smaller queries that will interact to form a user session like
those exercised in a real world environment. Moreover, we expect to include
update operations as part of the workload.

6 Acknowledgements

The members of DAMA-UPC thank the Ministry of Science and Innovation
of Spain and Generalitat de Catalunya, for grant numbers TIN2009-14560-
C03-03 and GRC-1187 respectively, and IBM CAS Canada Research for their
strategic research grant. David Dominguez-Sal thanks the Ministry of Sci-
ence and Innovation of Spain for the grant Torres Quevedo PTQ-11-04970.
The members of UPC and VUA would like to thank the European Com-
munity’s Seventh Framework Programme FP7/2007- 2013 for funding the
LDBC project. Renzo Angles is funded by Fondecyt Chile grant 11100364.

12



Finally, the authors would like to thank Orri Erling for his guiding on im-
plementing the Virtuoso test drivers and stored procedures.

References

[1] R. Angles. A comparison of current graph database models. In ICDEW,
pages 171–177, 2012.

[2] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan.
Linkench: a database benchmark based on the facebook social graph.
In ACM SIGMOD, 2013 (To appear).

[3] J. Biskup and H. Stiefeling. Transitive closure algorithms for very large
databases. In Workshop on Graph Theoretical Concepts in Computer

Science, 1988.

[4] H. Boral and D. J. DeWitt. A methodology for database system per-
formance evaluation. SIGMOD Record, 14(2):176–185, 1984.

[5] D. Chakrabarti, Y. Zhan, and C.s Faloutsos. R-mat: A recursive model
for graph mining. In ICDM, 2004.

[6] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó, S. Gómez-
Villamor, N. Mart́ınez-Bazan, and J. Larriba-Pey. Survey of graph
database performance on the hpc scalable graph analysis benchmark.
In IWGD, pages 37–48, 2010.

[7] Facebook. Annual report 2012 (10k). 1 Feb. 2013.

[8] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densifi-
cation and shrinking diameters. TKDD, 1(1):2, 2007.

[9] T. Neumann and G. Weikum. The rdf-3x engine for scalable manage-
ment of rdf data. VLDB Journal, 19(1):91–113, 2010.

[10] Mihalis Yannakakis. Graph-Theoretic Methods in Database Theory. In
PODS, pages 230–242. ACM Press, 1990.

13



Q1 Q3

Q6 Q9

Q11 Q12

Figure 2: Time in microseconds for queries Q1, Q3, Q6, Q9, Q11 and Q12
for graphs varying from 1,000 to 10M nodes.

14



Dex NeoAPI

1−10 11−100 101−1000

1
0

2
0

5
0

2
0

0
5

0
0

2
0

0
0

Degree

T
im

e
 (

u
s
)

1−10 11−100 101−1000

1
e

+
0

2
1

e
+

0
4

1
e

+
0

6

Degree
T

im
e
 (

u
s
)

NeoCypher RDF-3X

1−10 11−100 101−1000

1
e

+
0

2
1

e
+

0
3

1
e

+
0

4
1

e
+

0
5

1
e

+
0

6

Degree

T
im

e
 (

u
s
)

1−10 11−100 101−1000

1
0

0
0

2
0

0
0

5
0

0
0

1
0

0
0

0

Degree

T
im

e
 (

u
s
)

Virtuoso PostgreSQL

1−10 11−100 101−1000

5
0

2
0

0
1

0
0

0
5

0
0

0
2

0
0

0
0

Degree

T
im

e
 (

u
s
)

1−10 11−100 101−10001
e

+
0

2
5

e
+

0
2

5
e

+
0

3
5

e
+

0
4

Degree

T
im

e
 (

u
s
)

Figure 3: Time in microseconds for Q6 for different systems grouped by the
degrees of the input nodes for the 10M graph.

15



Dex NeoAPI

NeoCypher RDF-3X

Virtuoso PostgreSQL

Figure 4: Time in microseconds for computing the shortest path algorithm
used in Q9. The plots show different path lengths (from 1 to 5) in the plot
lines and graph sizes in the horizontal axis.

16



A Datasets

Table 2 shows characteristics of the graphs generated for the tests, as well
as the size in megabytes for each one.

Nodes Edges Dex Neo4j PSQL Virt. RDF-3X

1K 7K 4M 1M 44M 33M 2M

10K 92K 8M 8M 96M 39M 7M

100K 1.2M 66M 82M 447M 177M 67M

1M 14M 706 942M 4.2G 915M 706M

10M 161M 7.7G 11.5G 38G 8.6G 8.2G

Table 2: Datasets used in the evaluation of the benchmark.

B Path lengths and degree distribution for queries

Figure 5 shows the distributions of the length of the paths, for different
graph sizes, used in the evaluation of shortest-path queries (query Q9). We
see that the distribution of the paths generated is similar for different graph
sizes, and that query instances looking for short paths are more common
than those looking for long paths. This simulates that it is more likely to
search people who are friends or friends-of-a-friend, than random people.

Figure 6 shows the distribution of the degrees of the nodes used in the
query instances of query Q6, for the graph of 10M nodes. We see that there
are more query instances querying from nodes with low degree than with
large degree, which is expected since the degree of the nodes of the graphs
follow a power law distribution.

C Stored Procedures

For the tests described in the above sections, PostgreSQL and Virtuoso are
installed as services to which the benchmark connects and sends the query,
as opposed to Dex and Neo4j, where the databases are embedded into the
executable. This means that the queries’ parameters have to be sent to
the engine. This places PostgreSQL and Virtuoso in a disadvantageous
situation, specially for those simpler queries, where the cost to connect to
the database, send the query, and get the results can be high with respect to
the cost of actually performing the query. In order to determine the impact
of this overhead and to see how this affects the scalability of both systems

17



Figure 5: Path distribution, by length and graph size, used in shortest-path
queries (Q9).

Degree

F
re

q
u
e
n
c
y

0 200 400 600 800

0
1

0
0

0
2

0
0

0
3

0
0

0

Figure 6: The degree frequency histogram of the nodes used in query Q6,
for the 10M graph.

for the different queries, we have implemented them as stored procedures
for both relational databases. In this case, the parameters of the queries are
stored in a table, from which the stored procedure reads the data, executes
the query, and stores the result in the database. Although this execution
model does not exactly fit with that proposed by the benchmark (i.e. an
environment where the users execute different queries during their session,
so we can not have the queries pre stored in the database), this allows us to
remove any overhead incurred by the benchmark and focus purely on the cost
of the query. Figure 7 shows the results obtained by executing the queries
using stored procedures. We see that, for the simpler queries (i.e. Q1, Q3,
Q6, Q11 and Q12), both systems have seen a notable improvement in their

18



average execution time, specially Virtuoso, which obtains results comparable
to those obtained by the graph databases. However, in the case of Q9,
the times obtained are similar to those obtained by the benchmark. This
confirms the results that relational databases can obtain excellent results as
far as the queries do not involve traversing the graph further than two hops.

Q1 Q3

Q6 Q9

Q11 Q12

Figure 7: Time in microseconds for queries Q1, Q3, Q6, Q9, Q11 and Q12
for graphs varying from 1,000 to 10M nodes for Virtuoso and PostgreSQL
using stored procedures.

19


