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Graph database models can be characterized as those where data structures for the schema and
instances are modeled as graphs or generalizations of them, and data manipulation is expressed
by graph-oriented operations and type constructors. These models flourished in the eighties and
early nineties in parallel to object oriented models and their influence gradually faded with the
emergence of other database models, particularly the geographical, spatial, semistructured and
XML.

Recently, the need to manage information with inherent graph-like nature has brought back the
relevance of the area. In fact, a whole new wave of applications for graph databases emerged with
the development of huge networks (e.g. Web, geographical systems, transportation, telephones),
and families of networks generated due to the automation of the process of data gathering (e.g.
social and biological networks).

The main objective of this survey is to present in a single place the work that has been done
in the area of graph database modeling, concentrating in data structures, query languages and
integrity constraints.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics|: Graph Theory—graph
algorithms; networks problems; H.2.1 [Database Management|: Logical Design—data Mod-
els; H.2.3 [Database Management]: Languages—data description languages (DDL); data ma-
nipulation languages (DML); query Languages; H.2.5 [Database Management]: Heteroge-
neous Databases; H.2.8 [Database Management]|: Applications; [.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—representation languages; semantic net-
works; K.6.3 [Management of Computing and Information Systems|: Software Manage-
ment—>Software development

General Terms: Design, Languages, Management

Additional Key Words and Phrases: Conceptual database models, database systems, database
models, graph databases, graph database models, graph query languages, graph integrity con-
straints

1. INTRODUCTION

The term data model has been used in the information management community
with different meanings and in diverse contexts. In its most general sense, a
data[base] model (db-model)® is a concept that describes a collection of concep-
tual tools for representing real-world entities to be modeled and the relationships
among these entities [Silberschatz et al. 1996]. Often this term denotes simply a
collection of data structure types, or even a mathematical framework to represent
knowledge [McGee 1976].

From a database point of view, the conceptual tools defining a db-model should
address at least the structuring and description of the data, its maintainability and
the form to retrieve or query the data. According to these criteria, a db-model is
defined as a combination of three components, first a collection of data structure

'Tn the database literature the terms “data model” and “database model” (and sometimes even
“model”) usually denote the same concept. In the scope of this survey we will consider them as
synonyms and use the abbreviated expression db-model.
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Fig. 1. Evolution of database models. Rectangles denote database models, arrows indicate in-
fluences, and circles denote theoretical developments. On the left hand side a time-line in years
(After a diagram by A. O. Mendelzon.)

types, second a collection of operators or inference rules and third a collection of
general integrity rules [Codd 1980]. Note that several proposals of db-models define
only the data structures, omitting sometimes operators and/or integrity rules.

Due to the importance of modeling conceptually, philosophically and in prac-
tice, db-models have become essential abstraction tools. Among the purposes of
a db-model are: tool for specifying the kinds of data permissible; general design
methodology for databases; coping with evolution of databases; development of
families of high level languages for query and data manipulation; focus in DBMS
architecture; vehicle for research into the behavioral properties of alternative orga-
nizations of data [Codd 1980].

Since the emergence of database management systems, there has been an ongoing
debate about what the db-model for such a system should be. The evolution and
diversity of existent db-models show that there is no silver bullet for data modeling.
The parameters influencing their development are manifold, and among the most
important we can mention the characteristics or structure of the domain to be
modeled, the type of intellectual tools that appeals the user, and of course, the
hardware and software constraints imposed. Additionally, each db-model proposal
is grounded on certain theoretical tools, and serves as base for the development of
related models. Figure 1 sketches these influences.

Surveys and taxonomies of db-models are as manifold as db-models themselves
(e.g. [Silberschatz et al. 1996; Navathe 1992; Beeri 1988; Kerschberg et al. 1976]).
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Following we briefly describe the most representative and widely accepted and/or
used db-models which are of general purpose, i.e., although best suited for partic-
ular kinds of data, do not have any particular application in mind.

1.1 Database Models Evolution — Brief Historical Overview

In the beginnings of the design of db-models, physical (hardware) constraints were
one of the fundamental parameters to be considered. Before the advent of the rela-
tional model, most db-model focused essentially in the specification of the structure
of data in actual file systems. Kerschberg et al. [1976] developed a taxonomy of
db-models prior to 1976, comparing essentially their mathematical structures and
foundation, and the levels of abstraction used.

Two representative db-models are the hierarchical [Tsichritzis and Lochovsky
1976] and network [Taylor and Frank 1976] models, which emphasize the physical
level, and offer the user the means to navigate the database at the record level,
thus providing low level operations to derive more abstract structures.

The relational db-model was introduced by Codd [1970; 1983] and highlights
the concept of level of abstraction by introducing the idea of separation between
physical and logical levels. It is based on the notions of sets and relations. Due to
its simplicity of modeling, it gained a wide popularity among business applications.

Semantic db-models [Peckham and Maryanski 1988] allow database designers to
represent objects and their relations in a natural and clear manner to the user
(as opposed to previous models). They intended to provide the user with tools
that could capture faithfully the semantics of the information to be modeled. A
well-known example is the entity-relationship model [Chen 1976].

Object oriented db-models [Kim 1990] appeared in the eighties, when most of the
research was concerned with so called “advanced systems for new types of appli-
cations [Beeri 1988]”. These db-models are based on the object-oriented paradigm
and their goal is representing data as a collection of objects that are organized in
classes and have complex values associated with them.

Graph db-models made their appearance almost in parallel with the object ori-
ented db-models, as an alternative to the limitations of traditional db-models for
capturing the inherent graph structure of data appearing in applications such as
hypertext or geographic database systems, where the interconnectivity of data is
an important aspect.

Semistructured db-models [Buneman 1997] are designed to model data with a
flexible structure, e.g., documents and Web pages. Semistructured data (also called
unstructured data) is neither raw nor strictly typed as in conventional database
systems. Additionally, data is mixed with the schema, a feature which allows
extensible exchange of data. These db-models appeared in the nineties and are
currently in evolution.

The XML (eXtensible Markup Language) [Bray et al. | model did not originate in
the database community. Although originally introduced as a standard to exchange
and model documents, soon it became a general purpose model, with focus on
information with tree-like structure. Similar to semistructured model, schema and
data are mixed.

See Section 2.3 for a more in depth comparison among these models.
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1.2 Scope, Contributions and Organization of this Survey

The objective of this survey is to present in a single place the work that has been
done in the area of graph database modeling. On these lines, the survey is slightly
biased towards sistematizing the different developments and relevant pointers to
facilitate researchers to go to the sources, rather than balancing the area. This goal
is highlighted by the fact that the area has been overlooked and lately is gaining
relevance again.

The contributions of this survey are:

—To conceptualize the notion of graph db-model by proposing a definition which
encompasses implicit and informal notions used in the literature (Section 2.1).

—To compare graph db-models against other db-models, highlighting their im-
portance as an area with its own motivations, applications and characteristic
problems (Sections 2.2, 2.3 and 2.4).

—To define a set of typical characteristics of graph db-models and do a comparative
study of existing graph db-models based on this criteria. We concentrate in
presenting the main aspects of modeling, that is, data structures, query languages
and integrity constraints (Section 3).

—To present in a single place a working description of the most relevant graph
db-models (Appendix A).

We would like to warn the reader that there are several related topics that fall
out of the scope of this survey. Among the most important we can mention graph
visualization, graph data structures and algorithms for secondary memory, graph
methods for databases, and in general graph database system implementation.

On the same lines, there are other important db-models as well as modeling
frameworks which concern graph modeling, but due to the size limitations of
this survey they are not covered here. Among the db-models are Spatial db-
models [Paredaens and Kuijpers 1998; Samet and Aref 1995], Geographical In-
formation Systems (GIS) [Shekhar et al. 1997; Aufaure-Portier and Trépied 1976],
Temporal db-models [Tansel et al. 1993; Chomicki 1994], and Multidimensional
db-models [Vassiliadis and Sellis 1999]. Frameworks related to our topic, but not di-
rectly focusing in database issues are Semantic Networks [Sowa 1991; Griffith 1982],
Conceptual Graphs [Sowa 1976; 1984], Knowledge Representation Systems [Deng
and Chang 1990], Topic Maps [Pepper and Moore 2001; ISO 1999], Hypertext [Con-
klin 1987], and the recent family of models for representing ontologies on the Web,
OWL [McGuinness and van Harmelen 2004].

2. GRAPH DATA MODELING
2.1 What is a Graph Data Model?

Although most papers on graph db-models use the term “graph data[base] model”,
few of them define the notion explicitly. Nevertheless their views on what a graph
db-model is do not differ substantially. In some cases an implicit definition is given
as a comparison against other models where graphs are involved, like the semantic,
object-oriented and semi-structured models.

In what follows we will conceptualize the notion of graph db-model based on three
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basic components, namely data structures, transformation language, and integrity
constraints. Hence, a graph db-model is characterized by:

— The data and/or the schema are represented by graphs, or by data structures
generalizing the notion of graph (hypergraphs or hypernodes). There is wide con-
sensus on this point modulo slight variations.

Let us review different wordings of authors on this issue. The approach is to model
the database directly and entirely as a graph [Giiting 1994]. A graph db-model is
one whose single underlying data structure is a labeled directed graph; the database
consists of a single digraph [Levene and Loizou 1995]. A database schema in this
model is a directed graph, where leaves represent data and internal nodes represent
connections between the data [Kuper and Vardi 1984]. Directed labeled graphs
are used as the formalism to specify and represent database schemas, instances,
and rules [Paredaens et al. 1995]. In this model, a database is described in terms
of a labeled directed graph called schema graph [Kunii 1987]. A graph db-model
formalizes the representation of the data structures stored in the databases as a
graph [Graves et al. 1995a]. The schema as well as the instance of an object
database is represented by a graph. The nodes of the instance represent the objects
of the database [Gyssens et al. 1990]. Database instances and database schemas
are described by certain types of labeled graphs [Hidders 2002]. The model for
data is organized as graphs [Amann and Scholl 1992]. Labeled graphs are used to
represent schemas and instances [Hidders and Paredaens 1993].

An issue transversal to all graph db-models is the level of separation between schema,
and data (instances). In most cases the schema and the instances can be clearly
distinguished.

— Data manipulation is expressed by graph transformations [Gyssens et al.
1990], or by operations whose main primitives address directly typical features
of graphs, like paths, neighborhoods, subgraphs, graph patterns, connectivity, and
statistics about graphs (diameter, centrality, etc.). The db-model defines a flexible
collection of type constructors and operators which create and access the graph
data structures [Graves et al. 1995a], or in other terms, the approach is to express
all queries in terms of a few powerful graph manipulation primitives [Giiting 1994].
The operators of the language can be based on pattern matching, i.e. finding of
all occurrences of a prototypical piece of an instance graph [Hidders and Paredaens
1993].

— The existence of integrity constraints enforcing the consistency of the data.
These constraints can be grouped in schema-instance consistency, identity and ref-
erential integrity, and functional and inclusion dependencies. Examples of these are,
labels with unique names [Graves et al. 1995b], typing constraints on nodes [Kuper
and Vardi 1993], functional dependencies [Levene and Poulovassilis 1991], domain
and range of properties [Klyne and Carroll 2004].

Summarizing, a graph db-model is a model where the data structures for the
schema and/or instances are modeled as a (labeled)(directed) graph, or generaliza-
tions of the graph data structure, where data manipulation is expressed by graph-
oriented operations and type constructors, and has integrity constraints appropriate
for the graph structure.

Technical Report TR/DCC-2005-10 - Computer Science Department - Universidad de Chile.



Table I. A coarse-granularity comparative view among the most influential database
models. The parameters are: abstraction level, base data structure used, and the
types of information objects the db-model focus in.

[ Database model [ Abstraction level [ Base data structure [ Information focus ‘
Network physical pointers + records records
Relational logical relations data + attributes
Semantic user graph schema + relations
Object oriented physical/logical objects object + methods
Semistructured logical tree data 4+ components
Graph logical /user graph data + relations

2.2 Why a Graph Data Model?

The application areas of graph db-models are those were information about the
interconnectivity or the topology of the data is more important, or as important
as, the data itself. This is usually accompanied by the fact that data and relations
among data are at the same level. In fact, introducing graphs as a modeling tool
has several advantages for this type of data.

First, it leads to a more natural modeling. Graph structures are visible to the
user and they allow a natural way of handling applications data (e.g. hypertext
or geographic databases). Graphs have the advantage of being able to keep all
the information about an entity in a single node and show related information by
arcs connected to it [Paredaens et al. 1995]. Graph objects (like paths, neighbor-
hoods) may have first order citizenship; a user can define some part of the database
explicitly as a graph structure [Giiting 1994], allowing encapsulation and context
definition [Levene and Poulovassilis 1990].

Second, queries can refer directly to this graph structure. Associated with graphs
are specific graph operations in the query language algebra, such as finding shortest
paths, determining certain subgraphs, and so forth. Explicit graphs and graph
operations allow users to express a query at a high level of abstraction. To some
extent, this is in contrast to graph manipulation in deductive databases, where often
fairly complex rule programs need to be written [Giiting 1994]. It is not important
to require full knowledge of the structure to express meaningful queries [Abiteboul
et al. 1997]. Last but not least, for purposes of browsing it may be convenient to
forget the schema [Buneman et al. 1996].

Third, as far as implementation is concerned, graph databases may provide spe-
cial structures for the storage of graphs and efficient graph algorithms available for
realizing specific operations [Giiting 1994].

2.3 Comparison with other Database Models

In this section we compare graph db-models with the most influential db-models.
Table I presents a coarse granularity overview of these comparison. Below we
present the details.

Physical db-models were the first ones to offer the possibility to organize large
collections of data. Among the most important ones are the hierarchical [Tsichritzis
and Lochovsky 1976] and network [Taylor and Frank 1976] models. These models
lack good abstraction level and are close to physical implementations. The data-
structuring is not flexible and not apt to model non-traditional applications.
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Relational db-model [Codd 1970; 1983] was introduced by Codd to highlight the
concept of level of abstraction by introducing a separation between physical and
logical levels. Gradually the focus shifted to modeling data as seen by applications
and users [Navathe 1992]. This is the emphasis and the achievement of the relational
model, in a time where the domain of application were basically simple data (banks,
payments, commercial and administrative applications).

The relational model was a landmark development because it provided a mathe-
matical basis to the discipline of data modeling. It is based on the simple notion of
relation, which together with its associated algebra and logic, made the relational
model a primary model for database research. In particular, its standard query and
transformation language, SQL, became a paradigmatic language for querying.

The differences between graph db-models and the relational db-model are man-
ifold. Among the most relevant ones are: the relational model was directed to
simple record-type data with a structure known in advance (airline reservations,
accounting, inventories, etc.). The schema is fixed and extensibility is a difficult
task. Integration of different schemas is not easy nor automatizable. The query
language is not oriented to explore the underlying graph of relationships among the
data, for example paths, neighborhoods, patterns.

Semantic db-models [Peckham and Maryanski 1988] have their origin in the ne-
cessity to provide more expressiveness and to incorporate a richer set of semantics
into the database from the user point of view. They allow database designers
to represent objects and their relations in a natural and clear manner (similar to
the way users view an application) by using high-level abstraction concepts such
as aggregation, classification and instantiation, sub- and super-classing, attribute
inheritance and hierarchies [Navathe 1992].

In general, the advantages of semantic models, are oriented toward the support of
database design and evolution [Hull and King 1987]. A well-known example is the
entity-relationship model [Chen 1976]. It has become a basis for the early stages
of database design. Other examples of semantic db-models are IFO [Abiteboul and
Hull 1984] and SDM [Hammer and McLeod 1978]. For graph db-models research,
semantic db-models are relevant because their orientation to deal with problem
associated to graph structure and relations among the entities to be modeled.

Object oriented (0-0) db-models [Kim 1990] appeared in the eighties, when the
database community realized that the relational model was inadequate for data in-
tensive domains (Knowledge bases, engineering applications). O-O databases were
motivated by the emergence of non-conventional database applications consisting
of complex objects systems with many semantically interrelated components as in
CAD/CAM, computer graphics or information retrieval.

According to the O-O programming paradigm on which they are based, their ob-
jective is to represent data as a collection of objects that are organized in classes and
have complex values and methods associated with them. Although O-O db-models
permit much richer structures than the relational db-model, they still require that
all data conform to a predefined schema [Abiteboul et al. 1997].

0-0O db-models are similar to semantic models in that they provide mechanisms
for constructing complex data by interrelating objects, and are fundamentally dif-
ferent in that they support forms of local behavior in a manner similar to object-

Technical Report TR/DCC-2005-10 - Computer Science Department - Universidad de Chile.



oriented programming languages. For example, in O-O db-models identifiers are
external to the objects and they remain invariant, whereas semantic models make
up identifiers or keys based on internal attributes or internal properties; O-O sup-
port information-hidding and encapsulation [Navathe 1992].

0-O db-models have been related to graph db-models due to the explicit or
implicit graph structure in their definitions [Levene and Poulovassilis 1991; Andries
et al. 1992; Gyssens et al. 1990]. Nevertheless, there remain important differences
rooted in the form that each of them models the world. O-O db-models view the
world as a set of complex objects having certain state (data) and interacting among
them by methods. On the contrary, graph db-models, view the world as a network
of relations, emphasizing the interconnection of the data, and the properties of
these relations.

The emphasis of O-O db-models is on the dynamics of the objects, their values
and methods. In contrast, graph db-models emphasizes the interconnection while
maintaining the structural and semantic complexity of the data. Further compari-
son between O-O and graph db-models may be founded in [Beeri 1988; Kerschberg
et al. 1976; Navathe 1992; Silberschatz et al. 1996].

Semistructured db-models [Buneman 1997; Abiteboul 1997] were motivated by the
increased existence of semistructured data (also called unstructured data), data ex-
change, and data browsing [Buneman 1997]. In semistructured data the structure
is irregular, implicit and partial; the schema does not restrict the data, only de-
scribes it, is very large and rapidly evolving; the information associated with a
schema is contained within the data (data contains data and its description, so it
is self-describing) [Abiteboul 1997].

Among the most representative models are OEM [Papakonstantinou et al. 1995],
Lorel [Abiteboul et al. 1997], UnQL [Buneman et al. 1996], ACeDB [Stein and
Tierry-Mieg 1999] and Strudel [Ferndndez et al. 1998]. Generally, semistruc-
tured data is represented by a tree-like structure. Nevertheless cycles between
data are possible, establishing in this way a structural relation with graph db-
models. Some authors characterize semistructured data as rooted directed con-
nected graphs [Buneman et al. 1996].

2.4 Graph Data Models Motivations and Applications

Graph db-models are motivated by real-life applications where information about
interconnectivity of its pieces is a salient feature. We will divide these application
areas into Classical and Complex networks.

Classical Applications. The applications that motivated the introduction of the
notion of graph databases were manifold:

—Generalizations of classical db-models [Kuper and Vardi 1984]. Classical models
were criticized for their lack of semantics, the flat structure of the data they
allow, the difficulties for the user to “see” the connectivity of the data, and the
difficult to model complex objects [Levene and Poulovassilis 1990].

—On the same direction, the observation that graphs have been integral part of
the database design process in semantic and object-oriented db-models, brought
the idea of introducing a model in which both, data manipulation and data
representation were graph based [Gyssens et al. 1990].
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—Limitations of expressive power of languages for complex applications motivated
also the search for models that resemble more closely such applications [Paredaens
et al. 1995].

—Limitations (at the time) of knowledge representation systems [Kunii 1987], and
the need for intricate but flexible knowledge representation and derivation tech-
niques [Paredaens et al. 1995].

—The need for improving functionalities of object-oriented db-models [Poulovassilis
and Levene 1994]. In this direction the application in mind were CASE, CAD,
image processing, and scientific data analysis.

—Graphical and visual interfaces, geographical, pictorial and multimedia systems [Gyssens
et al. 1990; Consens and Mendelzon 1993; Sheng et al. 1999].

—Applications where data complexity exceeded the relational db-model capabili-
ties also motivated graph databases. For instance, managing transport networks
(train, plane, water, telecommunications) [Mainguenaud 1995], spatially embed-
ded networks like highway, public transport [Giiting 1994]. Several of these ap-
plications are now in the field of GIS and spatial databases.

—Software systems and integration [Kiesel et al. 1996].

—The emergence of hypertext on-line made evident the need for other db-models,
for example [Tompa 1989; Watters and Shepherd 1990; Amann and Scholl 1992].
Together with hypertext, the Web created the need for a model more apt than
classical ones for information exchange.

Complex Networks. Several areas have witnessed the emergence of huge networks
of data which share some particular mathematical parameters, called complex net-
works [Newman 2003; Albert and Barabasi 2002; Dorogovtsev and Mendes 2003].
The need for database management for some classes of these networks has been
recently highlighted [Olken 2003; Jagadish and Olken 2003; Tsvetovat et al. 2004;
Graves et al. 1995b]. Although it is not evident yet if from the point of view
of databases one can treat them as a whole, we will describe them together for
presentation purposes. After the survey of Newman [2003], we will group them in
four categories: social networks, information networks, technological networks and
biological networks. Following we describe specific examples for each of them.

—In social networks [Hanneman 2001], nodes are people and groups while links
show relationships or flows between the nodes. Some examples are friendship,
business relationships, patterns of sexual contacts, research networks (collab-
oration, co-authorship), communication records (mail, telephone calls, email),
Computer networks [Wellman et al. 1996], National security [Sheth et al. 2005].
There is growing activity in the area of Social Network analysis [Brandes 2005],
visualization and data processing in such networks.

—Information networks model relations representing information flow, such as cita-
tions between academic papers [de S. Price 1965], World Wide Web (hypertext,
hypermedia) [Florescu et al. 1998; Kumar et al. 2000; Broder et al. 2000],
peer-to-peer networks [Nejdl et al. 2003], relations between word classes in a
thesaurus, preference networks.

—In technological networks the structure is mainly governed by space and geog-
raphy. Some examples are Internet (as network of computers), electric power
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grids, airline routes, telephone networks, delivery network (post office). The area
of Geographic Information Systems (GIS) is today covering a big part of this area
(roads, railways, pedestrian traffic, rivers) [Shekhar et al. 1997; Medeiros and
Pires 1994].

— Biological networks represent biological information whose volume, management
and analysis has become an issue due to the automation of the process of data
gathering. Good example is the area of Genomics, where networks occur in gene
regulation, metabolic pathways, chemical structure, map order and homology
relationships between species [Graves |. There are other kinds of biological net-
works, such as food webs, neural networks, etc. The reader can consult database
proposals for genomics [Graves et al. 1995b; Graves ; Hammer and Schneider
2004], an overview of models for biochemical pathways [Deville et al. 2003], a
tutorial on Graph Data Management for Biology [Olken 2003], and a model for
Chemistry [Benko et al. 2003].

It is important to stress that classical query languages offer little help when
dealing with the type of queries needed in the above areas. As examples, data
processing in GIS include geometric operations (area or boundary, intersection,
inclusions, etc), topological operations (connectedness, paths, neighbors, etc) and
metric operations (distance between entities, diameter of the network, etc). In ge-
netic regulatory networks examples of measures are connected components (interac-
tions between proteins) and degrees of nearest neighbors (strong pair correlations).
In social networks, distance, neighborhoods, clustering coefficient of a vertex, clus-
tering coefficient of a network, betweenness, size of giant connected components,
size distribution of finite connected components [Dorogovtsev and Mendes 2003].
Similar problems arise in the Semantic Web, where querying RDF data increasingly
needs graph features [Angles and Gutierrez 2005].

3. GRAPH DATABASE MODELS

This section presents the work that has been done in the database community on
graph db-models. We start by presenting a brief historical overview of the main
developments in the area in the form of proposals of graph db-models. Then, we
proceed to a comparative study of the main features of graph db-models.

Database models are typically compared by either using a set of common features
[Fry and Sibley 1976; Tsichritzis and Lochovsky 1976; Peckham and Maryanski
1988] or defining a general model used as comparison basis [Hull and King 1987].
The evaluation presented in this survey follows a conceptual organization of mod-
eling features, by considering three general components in the database modeling
process: (a) Basic foundations of the model and the data structures available at
schema and instance level, (b) Approaches to enforce data consistency (integrity
constraints), and (c) Languages for querying and manipulating the database. The
study emphasizes conceptual modeling issues rather than implementation aspects.
Figure 4 summarizes the set of features and other information about graph db-
models.
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Fig. 2. Graph db-models development. Nodes indicate models and arrows citations. Dashed
nodes represent related works in graph db-models. DGV [Gutiérrez et al. 1994], GDM [Hidders
2002], GGL [Graves et al. 1995a], GMOD [Andries et al. 1992], GOAL [Hidders and Paredaens
1993], GOOD [Gyssens et al. 1990; 1991], GOQL [Sheng et al. 1999], Gram [Amann and Scholl
1992], GRAS [Kiesel et al. 1996], GraphDB [Giiting 1994], GROOVY [Levene and Poulovassilis
1991], G—Base [Kunii 1987], G—Log [Paredaens et al. 1995], Hypernode [Levene and Poulovas-
silis 1990], Hypernode2 [Poulovassilis and Levene 1994], Hypernode3 [Levene and Loizou 1995],
Hy+ [Consens and Mendelzon 1993], LDM [Kuper and Vardi 1984; 1993], Oz [Lécluse et al.
1988], PaMaL [Gemis and Paredaens 1993], R&M [Roussopoulos and Mylopoulos 1975], Simatic-
XT [Mainguenaud 1992], Tompa [Tompa 1989], W&S [Watters and Shepherd 1990].

3.1 Brief Historical Overview

Activity around graph databases flourished in the first half of the nineties and
then the topic almost disappeared. The reasons for this decline are manifold: the
database community moved toward semistructured data (a research topic which
did not have links to the graph database work in the nineties); the emergence of
XML captured all the attention of the work on hypertext; people working on graph
databases moved to particular applications like spatial data, web, documents; the
tree-like structure is enough for most applications. Figure 2 reflects this evolution
by means of papers published in main conferences and journals.

Graph db-models emerged with the objective of modeling information whose
structure is a graph. In an early approach, Roussopoulos and Mylopoulos [1975]
facing the failure of current (at the time) systems to take into account the semantics
of the database, proposed a semantic network to store data about the database. An
implicit structure of graphs for the data itself was presented in the Functional Data
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Model [Shipman 1981], whose goal was to provide a “conceptually natural” database
interface. A different approach proposed the Logical Data Model (LDM) [Kuper
and Vardi 1984], where an explicit graph db-model intended to generalize the rela-
tional, hierarchical and network models. Years later Kunii [1987] proposed a graph
db-model for representing complex structures of knowledge called G-Base.

In the late eighties, Lécluse et al. [1988] introduced Os, an object oriented db-
model based on a graph structure. On the same lines, GOOD [Gyssens et al. 1990]
is an influential graph-oriented object model, intended to be a theoretical basis for
a system in which manipulation as well as representation are transparently graph-
based. Among the subsequent developments based on GOOD are: GMOD [Andries
et al. 1992] that proposes a number of concepts for graph-oriented database user
interfaces; Gram [Amann and Scholl 1992] which is an explicit graph db-model for
hypertext data; PaMalL [Gemis and Paredaens 1993] which extends GOOD with
explicit representation of tuples and sets; GOAL [Hidders and Paredaens 1993] that
introduces the notion of association nodes; G-Log [Paredaens et al. 1995] which
proposed a declarative query language for graphs; and GDM [Hidders 2002] that
incorporates representation of n-ary symmetric relationships.

There were proposals that used generalization of graphs with data modeling
purposes. Levene and Poulovassilis [1990] introduced a db-model based on nested
graphs, called the Hypernode Model, on which subsequent work was developed [Poulo-
vassilis and Levene 1994; Levene and Loizou 1995]. The same idea was used for mod-
eling multi-scaled networks [Mainguenaud 1992] and genome data [Graves et al.
1995a]. GROOVY [Levene and Poulovassilis 1991] is an object oriented db-model
which is formalized using hypergraphs. This generalization was used in other con-
texts: query and visualization in the Hy+ system [Consens and Mendelzon 1993];
modeling of data instances and access to them [Watters and Shepherd 1990]; rep-
resentation of user state and browsing [Tompa 1989];

There are several other proposals that deal with graph data models. Giiting pro-
posed GraphDB [Giiting 1994] intended for modeling and querying graphs in object-
oriented databases and motivated by managing information in transport networks.
Database Graph Views [Gutiérrez et al. 1994] proposed an abstraction mecha-
nism to define and manipulate graphs stored in either relational object oriented
or file systems. The project GRAS [Kiesel et al. 1996] uses attributed graphs for
modeling complex information from software engineering projects. The well known
OEM [Papakonstantinou et al. 1995] model aims at providing integrated access to
heterogeneous information sources, focusing in information exchange. Another im-
portant and recent line of development has to do with data representation models
and the World Wide Web. Among them are data exchange models like XML [Bray
et al. |, metadata representation models like RDF [Klyne and Carroll 2004] and
ontology representation models like OWL [McGuinness and van Harmelen 2004].

3.2 Data Structures

The representation of entities and relations are identified as being fundamental
to graph db-models. An entity or object represents something that exists as a
single and complete unit. A relation is a property or predicate that establishes
a connection between two or more entities. In this section, we analyze the data
structures used for modeling entities and relations in graph db-models.
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One of the most distinctive characteristic of a graph db-model is a framework
for the representation of connectivity among entities, distinct from attributes (re-
lational model), standard abstractions (semantic models), complex objects (O-O
models), or composition relations (semistructured models).

All graph db-models have as their formal foundation variations on the basic
mathematical definition of a graph, e.g. directed or undirected graphs, labeled or
unlabeled edges and nodes, hypergraphs, hypernodes. On top of this basic layer,
models present diverse features influenced by the semantic or object oriented ap-
proaches. For example, the data representation of GOOD, GMOD, G-Log and
Gram is simply a digraph with labeled nodes and labeled edges between them.
The Hypernode Model, Simatic-XT and GGL emphasize the use of hypernodes for
representing nested complex objects. GROOVY is centered in the use of hyper-
graphs as a formalism for modeling complex objects, sub-object sharing, integrity
constraints and structural inheritance.

Representing the database as a simple flat graph (with many interconnected
nodes) has the drawback that, in practice, it is difficult to present the information
to the user in a clear way. In contrast, a hypernode database consists of a set of
nested graphs, which provides inherent support for data abstraction and the abil-
ity to represent each real-world object as a separate database entity [Poulovassilis
and Levene 1994]. Additionally, the use of hypernodes and hypergraphs allows
a concept to grow from a simple undefined concept (primitive object) to one de-
fined by multiple complex relations (complex object). In contrast, a pure-graph
approach (where nodes and edges are different structures) does not provide such
expressiveness and extensibility.

Note that, hypergraphs can be modeled by hypernodes by (i) encapsulating the
contents of each undirected hyperedge within a further hypernode and (ii) replacing
each directed hyperedge by two hypernodes related by a labeled edge. In contrast,
multi-level nesting provided by hypernodes cannot be easily captured by hyper-
graphs.

Most models have explicit labels on edges, except LDM, GROOVY and the
Hypernode model. LDM has an order among the edges which induce implicit
labeling. The Hypernode model and GROOVY do not use labeled edges but the
task of representing relations (and its names) can be attained by encapsulating
edges which represent the same relation (same label edges), within one hypernode
(or hyperedge) labeled with the relation-name. For example, we can represent the

set of labeled arcs personl™<George, person2™~—5Ana and person3~"SJulia,
by the hypernode:

name

personl —> George
person2 —> Ana
person3 —> Julia

Next, we will study in more detail the representation of entities and relations.

3.2.1 Representation of entities. Models represent entities at both, instance and
schema level. Specifically, entity types, relation types and schema restrictions are
related to the definition of the database schema, and instances of entities and
relations conform the database instances.
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Several models (e.g. GOOD, GMOD, G-Log and Gram) represent both schema
and instance as a labeled digraph. An exception is LDM, whose schemas are di-
graphs where leaves represent data and internal nodes represent structured data.
LDM instances consist of two-column tables, each of which associates entities of a
particular type (primitive, tuple or set).

A schema graph defines: (a) entity types represented as nodes labeled with zero
(GMOD) or one type name; (b) primitive entities represented as nodes labeled with
basic types; and (c) relations represented as edges labeled with relation-names.
Relations are only defined for entity types (primitive entities have no properties)
and each primitive entity has an associated domain of constants.

An instance graph contains: (a) concrete entities represented as nodes labeled by
either an entity type name or an object identifier; (b) primitive values represented
as nodes labeled with a value from the domain of a primitive entity; and (c) relations
represented as edges labeled with the corresponding relation-name according to the
schema.

The above approach was extended in other models by including nodes for explicit
representation of tuples and sets (PaMaL,, GDM) and n-ary relations (GOAL,GDM).
These types of nodes allows the definition of complex structures. Tuple and set
nodes of PaMalL are unlabeled, allowing to define (instantiate) more than one entity
class (respectively concrete entity) using the same tuple and set node, providing
data reduction. Association nodes of GOAL provide simple definition of multi-
attribute and multi-valued n-ary relations. Composite-value entities in GDM are
used for representing both tuples and n-ary relations.

The basic structure of a graph (nodes and edges) is complemented with the
use of hypernodes (Hypernode model, Simatic-XT and GGL) and hypergraphs
(GROOVY), extensions that provide support for nested structures. A novel feature
of GROOVY is the use of hypergraphs for defining value functional dependencies.
The hypernode model is characterized by using nested graphs at the schema and
instance level. A database consists of a set of hypernodes defining types and their
respective instances. GGL introduces, in addition to its support for hypernodes
(called Master-nodes), the notion of Master-edge for encapsulation of paths.

Although hypernodes are used in several models, there is a difference in its use.
Simatic-XT and GGL use hypernodes as an abstraction mechanism consisting in
packaging other graphs as an encapsulated vertex whereas the Hypernode model
additionally uses hypernodes to represent other abstractions e.g. complex objects,
relations, etc.

A common characteristic between models based on simple and those based on
extended graph structures is the support for defining nontraditional data types,
feature procured by the definition of complex objects. In this sense, LDM, PaMalL,
GOAL and GDM allow the representation of complex objects by defining special
constructs (tuple, set or association nodes). Hypernodes and Hypergraphs are flex-
ible data structures that support the representation of arbitrarily complex objects
and present inherent ability to encapsulate information.

3.2.2  Representation of Relations. Roughly speaking, we can distinguish two
types of relations occurring in graph db-models: Simple relations, which connect
two entities under a simple semantics (e.g. attributes), and are easily represented
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in graphs as edge labels; and complex relations, which conforms networks of rela-
tions (e.g. hierarchical) with additional semantics (e.g. composition), and whose
representation depends of the data structures provided by each model.

In what follows, we will discuss specific types of relations supported by graph
db-models.

—Attributes. The relation represents a property (mono-valued or multi-valued)

directly linked to an entity. Most graph db-models represent attributes by using
labeled edges directly related to nodes.
LDM and PaMal define tuple nodes to describe a set of attributes that are
(re)used to define an entity. In the case of the Hypernode model and GROOVY,
attributes are triples < node, edge, node > inside hypernodes or hyperedges which
represent complex objects. The (unlabeled) edge establishes the relation between
the attribute-name (first node) and the attribute-value (second node). GOOD
and GOAL define edges (called functional and non-functional) to distinguish
between mono-valued and multi-valued attributes.

— FEntities. If the relation of two or more objects conceptually describes a distinct
model object, such relation is considered an entity. This approach implies sup-
port for higher-order relations (relations between relations). Most models do not
support this feature because relations are represented as simple labeled edges.
A partial support is presented in GOAL, where association nodes may have prop-
erties. The Hypernode model and GROOVY have inherent support because
property-names can be complex objects represented as hypernodes or hyperedges.
GGL supports this feature by labeling edges with types.

— Neighborhood relations. Models with a basic graph structure provide simple sup-
port and visualization of neighborhood relations, although special structures used
by some of these models (e.g. tuple-nodes in PaMalL) can obscure the simplicity
of representation.

In the case of hypergraph and hypernode base models, neighborhood relations are
translated into nested relation. A particular modeling structure is the Master-
edge of Simatic-XT, which is used for representing Path relations.

—Standard abstractions. The most frequently used are aggregation (is-part-of rela-

tion) and its opposite composition (is-composed-by relation), association (n-ary
relations) and grouping or sets.
Some models provide explicit representation of tuples (LDM,PaMaL,GDM), sets
(LDM,PaMalL) and n-ary relations (GOAL, GDM). Models based on hypernodes
and hypergraphs support grouping by joining entities within an hypernode or an
hyperedge.

—Derivation and inheritance. These abstraction are represented at the schema
level by relations of subclass and superclass (ISA) and at the instance level by
relations of instantiation (is-of-type). The notion of inheritance (only structural-
attribute inheritance) is supported using these relations, allowing entity classes
with overlapping structure to share their semantic content.

ISA relations are explicitly supported in PaMal.,, GOAL, and GDM by consid-
ering ISA-labeled edges as class-hierarchy links. However note that this type
of relation can be implicitly considered as an attribute relation. The Hypernode

Technical Report TR/DCC-2005-10 - Computer Science Department - Universidad de Chile.



16

and GROOVY models show how structural inheritance is supported naturally by
nested-graph structures. The representation of object-class schemas by means of
hypergraphs leads to a natural formalization of the notion of object sharing and
structural inheritance.

—Nested relations. Recursively specified relations defined by nested objects.
This feature is naturally supported by using hypernode or hypergraph structures.

3.3 Integrity Constraints

Integrity constraints are general statements and rules, which define the set of consis-
tent database states or changes of state or both [Codd 1980]. Integrity constraints
have been studied for the relational [Date 1981; Thalheim 1991], semantic [Wed-
dell 1992; Thalheim 1996], object oriented [Schewe et al. 1993], and semistruc-
tured [Buneman et al. 1998; Alechina et al. 2003] db-models. Thalheim [1996]
presents a unifying framework for integrity constraints.

In the case of graph db-models, examples of integrity constraints include schema-
instance consistency, identity and referential integrity constraints, functional and
inclusion dependencies. Next we study each of them.

3.3.1 Schema-instance consistency. Entity types and type checking constitute
a powerful data-modeling and integrity checking tool, since they allow database
schemas to be represented and enforced. Some graph db-models do not define a
schema (e.g. first version of Hypernode, Simatic-XT, and initial versions of GGL),

The approach applied in most models (GOOD, GMOD, PaMaL, GOAL, G-log,
GDM and Gram) to confront the issue of schema-instance consistency follow in
general two guidelines: (i) the instance should contain only concrete entities an
relations from entity types and relations that were defined in the schema; (ii) an
entity in the instance may only have those relations or properties defined for its
entity type (or for a super-type in the case of inheritance). Then, all node and edge
labels occurring in the instance must occur in the scheme too, but the opposite is
not required in some models (GOOD, GMOD, GOAL and G-Log). In this way, in-
complete or non-existing information can be incorporated in the database. PaMal.,
GDM and Gram do not support incomplete information because they establish an
instantiation function between schema and instance.

LDM define a logic (similar to relational tuple calculus) used to specify integrity
constraints on LDM schemas and to define views. Integrity constraints are LDM
formulas which enforce that instance objects should satisfy certain conditions (sat-
isfaction of LDM formulas). That is, given a database and a sentence in the logic,
one can test effectively whether the sentence is true in the database or not.

GROOVY introduce the notion of object-class schemas over which objects are
defined. An object schema defines valid objects (value-schemas), value functional
dependencies, and valid shared values between objects (sub-object schemas). These
restrictions are formalized using a hypergraph representation. Indeed, there is a
one-to-one correspondence between each object schema and a hypergraph, where
objects are vertices, value functional dependencies are directed hyperedges, and
sub-object schemas are undirected hyperedges.

Additionally, conflicts of inheritance are discussed in some models. The general
approach is the notion of consistent schema to prevent problems. GOAL establishes
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that objects only belong to the class they are labeled with and their super-classes.
This implies that an object can only belong to two classes at once if these classes
have a common subclass. PaMal. does not provide a conflict resolution mechanism,
since the authors consider that this has to be part of the implementation.

Checking consistency is also related to restructuring, queries and updates of the
database (e.g. deletion of entity types or relations in the schema implies the dele-
tion of concrete entities in the instance). Given an arbitrary GOOD program,
i.e. a sequence of GOOD operations, statically checking the consistency of an
edge addition in the program is undecidable in general. In GMOD the notion of
schema-instance consistency is referenced to consistency of schema transformations
in object-oriented databases [Zicari 1991]. In PaMal an addition or deletion oper-
ation specifies a valid graph transformation between two instance graphs (schema
transformations are not included).

In [Poulovassilis and Levene 1994] the authors show that testing a hypernode
repository for well typedness can be performed in polynomial time with respect to
the size of the repository. GDM presents a systematic study of the complexity of
well-typedness checking: deciding well-typedness of a pattern with no ISA edges
under a schema graph with no implicit object class nodes is in PTIME; deciding
well-typedness of a pattern under a schema graph with no implied object class nodes
is co-NP complete; deciding well-typedness of an addition/deletion under a schema
graph with no implied object class nodes is in PSPACE; deciding well-typedness
of an addition under a schema graph with no implied object class nodes and no
composite-value classes is in PTIME.

Schema-instance separation. Another aspect to consider is the degree to which
schema and instance are different objects in the database (an issue discussed largely
in semistructured db-models). Representation of (un)structured entities means that
the data (does not) respect a previously defined data type. In this sense, a data
model can be classified as structured or non-structured in terms that it allows or
not the definition of a schema that restrict the database instance to well-typed
data.

In most models there is a separation between the database schema and the
database instance. An exception is the hypernode model presented in [Levene and
Loizou 1995], where the lack of typing constraints on hypernodes has the advantage
that changes to the database can be dynamic.

Redundancy of data. Because an instance graph can contain many instances of
entities, e.g. non-printable nodes (GOOD), set/tuple nodes (PaMalL), association
nodes (GOAL) or composite-value nodes (GDM), the database presents redundant
information. One possible solution is to introduce an operation which is used to
group entities on the basis of some of their relations. This abstraction creates a
unique entity for each equivalence class of duplicate entities; as such, it acts as
a duplicate eliminator. The correspondent operations are Abstraction (GOOD),
Reduce (PaMaL) and Reduction (GDM). This operation is informally mentioned
in GOAL as a merge of nodes representing the same value.

3.3.2  Object identity and referential integrity. Set-based data models such as
the relational model and the nested relational model are value-based, that is, tu-
ples in relations (respectively nested relations) are identified by the values of their

Technical Report TR/DCC-2005-10 - Computer Science Department - Universidad de Chile.



18

attributes. On the other hand, in O-O db-models object identity is independent of
attribute values and is achieved by equipping each database object with a unique
identifier (e.g. alabel). Graph db-models implement the two types of identification,
but several advantages accrue with identifiers: (i) arbitrarily complex objects can
be identified and referred, (ii) objects can share common sub-objects thus making
possible the construction of general networks, and (iii) query and update operation
can be simplified.

In some models, concrete entities like instance nodes (PaMal,, Gram), edges
(GGL), hypernodes (Hypernode based models), hyperedges (GROOVY) are labeled
with entity identifiers, whereas in models like GOOD, GMOD, GOAL, G-Log and
GDM each entity is identified by its attributes, although it exists independently of
their properties (it is considered as object identity).

The Hypernode Model [Poulovassilis and Levene 1994] defines two integrity con-
straints: Entity Integrity enforces that each hypernode is a unique real world entity
identified by their content; Referential Integrity requires that only existing entities
be referenced. Similarly, GGL [Graves et al. 1995a] establish that (i) labels in a
graph are uniquely named; (ii) edges are composed of the labels and vertices of the
graph in which the edge occurs. These constraints are similar to primary key and
foreign key (referential) integrity constraints in the relational db-model.

3.3.3  Functional dependencies. In the Hypernode model [Levene and Loizou
1995] the notion of semantic constraints were considered. The concept of Hypernode
functional dependency, denoted by A — B, where A and B are sets of attributes,
let us express that A determines the value of B in all hypernodes of the database.

GROOVY [Levene and Poulovassilis 1991] uses directed hyperedges to represent
Value Functional Dependencies (VFDs), which are used in the value schema level
to establish semantic integrity constraints. A VFD asserts that the object value
restricted to a set of attributes uniquely determines the object value restricted to
a further attribute.

Finally, let us remark that the notion of integrity constraint in graph db-models
is concentrated in the creation of consistent instances and the correct identification
and reference of entities. The notion of functional dependency is a feature taken
from the relational model that cannot be presented easily in all graph db-model.

3.4 Query and Manipulation Language

A query language is a collection of operators or inferencing rules which can be
applied to any valid instances of the data structure types of the model, with the
objective of manipulating and querying data in those structures in any combi-
nations desired [Codd 1980]. A great deal of papers discuss the problems con-
cerning the definition of a query language for a db-model [Vardi 1982; Hull and
King 1987; Ramakrishnan and Ullman 1993; Heuer and Scholl 1991; Abiteboul
1997; Abiteboul and Vianu 1997]. Also a variety of query languages and formal
frameworks for studying them have been proposed and developed, including the
relational db-model [Chandra 1988], semantic databases [Azmoodeh and Du 1988;
Andries and Engels 1993], object-oriented databases [Kifer et al. 1992], semistruc-
tured data [Buneman et al. 1996; Abiteboul 1997; Abiteboul et al. 1997] and the
Web [Abiteboul and Vianu 1997; Florescu et al. 1998].
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Fig. 3. Example of a graphical query language. The figure shows a G-Log query for the instance
in Figure 12. Query A asks for the names of Mary’s grandparents (fixed path query). Query B
asks for the name of the maternal grandmother of Mary (tree-like query). Query C' calculates
Mary’s Ancestors (transitive closure).

Among graph db-models, there is substantial work focused in query languages,
the problem of querying graphs, the visual presentation of results, and graphical
query languages. Due to the volume of the research done, this specific area deserves
by itself a thorough survey. Considering the scope of this survey, in this section we
limit ourselves to describe the most important query languages to serve as reference
resource.

The Logical Database Model [Kuper and Vardi 1984; 1993] presents a logic lan-
guage very much in the spirit of relational tuple calculus, which uses fixed sort
variables and atomic formulas to represent queries over a schema using the power
of full first order languages. The result of a query consists of those objects over a
valid instance that satisfy the query formula. In addition the model presents an
alternative algebraic query language proven to be equivalent to the logical one.

The proposal G-Log [Paredaens et al. 1995] includes a declarative language for
complex objects with identity. It uses the logical notion of rule satisfaction to
evaluate queries which are expressed as G-Log programs. G-Log programs are sets
of graph-based rules, which specify how the schema an instance of the database
will change. G-Log is a graph-based, declarative, nondeterministic, and computa-
tionally complete query language that does not suffer from the copy-elimination
problem. G-Log is a good example of graphical query language, see Figure 3.

Oriented to search the Web, Flesca and Greco [1999] show how to use partially
ordered languages to define path queries to search databases and present results
on their computational complexity. In addition, a query language based on the
previous ideas is proposed in [Flesca and Greco 2000].
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Cardelli et al. [2002] introduced a spatial logic for reasoning about graphs and
defined a query language based in pattern matching and recursion. This Graph
Logic combines first-order logic with additional structural connectives. A query ask
for a substitution of variables such that a satisfaction relation determines which
graph satisfy which formulae. The query language is based on queries that build
new graphs from old and transducers that relate input graphs with output graphs.

In the context of graph-oriented object models, there are query languages that
regard database transformations as graph transformations (which can be inter-
preted as database queries and updates). They are based on graph-pattern match-
ing and allow the user to specify node insertions and deletions in a graphical way.
GOOD [Gyssens et al. 1990] presented a graph-based language that is shown to be
able to express all constructive database transformations. This language was fol-
lowed by the proposals GMOD [Andries et al. 1992, PaMaL [Gemis and Paredaens
1993], GOAL [Hidders and Paredaens 1993|, and GUL [Hidders 2002].

Additionally, GOAL includes the notion of firpoints in order to handle the re-
cursion derived from a finite list of additions and deletions. PaMalL proposed the
inclusion of Loop, Procedure and Programs constructs, and PaMaL. and GUL pre-
sented an operator that reduces instance graphs by deleting repeated data. Note
that graph-oriented manipulation formalisms based on patterns allow a syntax-
directed way of working much more natural than text-based interfaces.

The query languages G, G+ y GraphLog integrate a family of related graphical
languages defined over a general simple graph model.

—The graphical query language G [Cruz et al. 1987] is based on regular expressions
that allow simple formulation of recursive queries. A graphical query in G is a set
of labeled directed multigraphs where nodes may be either variables or constants,
and edges can be labeled with regular expressions. The result of a query is the
union of all query graphs which match subgraphs from the instance.

—G evolved into a more powerful language called G+ [Cruz et al. 1989] where
a query graph remains as the basic building block. A simple query in G+ has
two elements, a query graph that specifies the class of patterns to search and a
summary graph that represent how to restructure the answer obtained by the
query graph.

—GraphLog [Consens and Mendelzon 1989] is a query language for hypertext that
extends G+ by adding negation and unifying the concept of a query graph. A
query is now only one graph pattern containing one distinguished edge, which
corresponds to the restructured edge of the summary graph in G+. The effect
of the query is to find all instances of the pattern that occur in the database
graph and for each one of them define a virtual link represented by the distin-
guished edge. GraphLog includes an implicit transitive closure operator, which
replaces the usual recursion mechanism. The algorithms used in the GraphLog
implementation are discussed in [Mendelzon and Wood 1989].

Glide [Giugno and Shasha 2002] is a graph query language where queries are
expressed using a linear notation formed by labels and wild-cards (regular expres-
sions). Glide uses a method called GraphGrep based on subgraph matching to
answer the queries.
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GROOVY [Levene and Poulovassilis 1991] introduces a Hypergraph Manipula-
tion Language (HML) for querying and updating labeled hypergraphs. It defines
two basic operators for querying hypergraphs by identifier or by value, and eight
operators for manipulation (addition an deletion) of hypergraphs and hyperedges.

Watters and Shepherd [1990] presents a framework for general data access based
in hypergraphs that include operators for creation of edges and set operators like
intersection, union and difference. In a different context, Tompa [1989] introduces
basic operations over hypergraph structures representing user state and views in
page-oriented hypertext data.

The literature also include proposals of query languages that deal with hypernode
structures:

—The Hypernode model [Levene and Poulovassilis 1990] defines a logic-based query
and update language, which is based in the expression of queries as sets of hy-
pernode rules (h-rules) that are called hypernode programs. The query language
defines an operator which infers new hypernodes from the instance using the set
of rules in a hypernode program.

—This query language was extended by Hyperlog [Poulovassilis and Levene 1994;
Poulovassilis and Hild 2001] including deletions as well as insertions, and dis-
cussing in more detail the implementation issues. A full Turing-machine capa-
bility is obtained by adding composition, conditional constructs and iteration.
Hyperlog is computationally and update complete. Although the evaluation of
Hyperlog programs is intractable in the general case.

—In a procedural style, HNQL [Levene and Loizou 1995] defines a set of operators
for declarative querying and updating of hypernodes. It also includes assignment,
sequential composition, conditional (for making inferences), for loop, and while
loop constructs.

In the area of Geographic information Systems, the Simatic-XT model [Langou
and Mainguenaud 1994] defines a query language. It includes basic operators that
deal with encapsulated data (nesting of hypernodes), set operators (union, con-
catenation, selection and difference) and high level operators (paths, inclusion and
intersections).

WEB [Graves 1993; Graves et al. 1994] is a declarative programming language
based on a graph logic and oriented to querying genome data. WEB programs define
graph templates for creating, manipulating and querying objects and relations in
the database. These operations are answered by matching graphs in valid instances.

Models like Gram [Amann and Scholl 1992] and GOQL [Sheng et al. 1999]
propose SQL-Style query languages with explicit path expressions. Gram presents
a query algebra where regular expressions over data types are used to select walks
(paths) in a graph. It uses a data model where walks are the basic objects. A
walk expression is a regular expression without union, whose language contains
only alternating sequences of node and edge types, starting and ending with a node
type. The query language is based on a hyperwalk algebra with operations closed
under the set of hyperwalks.

Models like DGV [Gutiérrez et al. 1994] and GraphDB [Giiting 1994] define
special operators for functional definition and querying of graphs. For example,
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a query in GraphDB consists of several steps, each of one computes operations
that specify argument subgraphs in the form of regular expressions over edges that
extend or restrict dynamically the database graph. GraphDB includes a class of
objects called path class, which are used to represent several paths in the database.

One of the most fundamental graph problems in graph query languages is to
compute reachability of information, which translates into path problems charac-
terized and expressed by recursive queries. For example, path queries are relevant
in GraphLog, Gram, Simatic-XT, DGV, GOQL, Flesca and Grego, Cardelli et
al., and in less degree treated in Hypernode, GOAL, Hyperlog, GraphDB, G-Log,
and HNQL. The notion of shortest path is considered in Flesca and Greco, G+,
GraphLog, and DGV. Path and other relevant graph queries for RDF are discussed
in [Angles and Gutierrez 2005].

The importance and computational complexity of path-based queries is studied
in several works [Agrawal and Jagadish 1994; 1989; 1988; R.V.Guha et al. 1998].
Finding simple paths with desired properties in direct graphs is difficult, and essen-
tially every nontrivial property gives rise to an NP-complete problem [Shasha et al.
2002]. Yannakakis [1990] surveyed a set of paths problems relevant to the database
area including computing transitive closures, recursive queries and the complexity
of path searching. Mannino and Shapiro [1990] present a survey of extensions to
database query languages for solve graph traversal problems.
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NAME | LASTNAME ~ PERSON PARENT (George Jonés (_Ana Stone)
George Jones Jul?a George paren parent
Ana Stone Julia Ana

Julia Jones David | James CJames DeviIDe [ Julia Jone§

James | Deville David | Julia

David | Deville Mary | James parenj_parent™\ parent| parent

Mary Deville Mary | Julia CDavid Devil@ (Mary Devil@

Fig. 5. A genealogy diagram (right-hand side) represented as two tables (left-hand side) NAME-
LASTNAME and PERSON-PARENT (Children inherit the lastname of the father just for mod-
eling purposes).

A. REPRESENTATIVE GRAPH DATABASE MODELS

In this section we describe the most representative graph db-models mentioned in
Table 4 and other related models that do not fit properly as graph db-models,
but use graphs, for example, for navigation, for defining views, or as language
representation.

For each proposal, we present their data structures, query language and integrity
constraint rules. In general, there are few implementations and no standard bench-
marks, hence we avoid surveying implementations (for information about the exis-
tence of implementations see Figure 4). To give a flavor of the modeling in each
proposal, we will use as running example the toy genealogy shown in Figure 5.

A.1 Logical Data Model (LDM)

Motivated by the lack of semantics in the relational db-model, Kuper and Vardi
[1984] proposed a db-model that generalizes the relational, hierarchical and network
models. The model describes mechanisms to restructure data plus a logical and an
algebraic query languages.

In LDM a schema is an arbitrary directed graph where each node has one of the
following types: the Basic type [ describes a node that contains the data stored;
the Composition type [ describes a node that contains tuples whose components
are taken from its children; the Collection type () describes a node that contains
sets, whose elements are taken from its child. Hence, internal nodes are of type
® or ® representing structured data, terminal nodes are of type [J and represent
atomic data, and edges represent connections between data.

A second version of the model [Kuper and Vardi 1993], besides renaming the
nodes Composition and Collection as Product ® and Power & respectively, incor-
porates a new type, the Union type @), intended to represent a collection whose
domain is the union of the domains of its children (see example in Figure 6).

An LDM database instance consists of an assignment of values to each node of the
schema. The instance of a node is a set of elements from the underlying domain (for
basic type nodes) and tuples or sets taken from the instance of the node’s children
(for ® , ® and Q) types).

With the objective of avoiding cyclicity at the instance level, the model proposes
to keep a distinction between memory locations and their content. Thus, instances
consist of a set of l-values (the address space), plus an r-value (the data space)

Technical Report TR/DCC-2005-10 - Computer Science Department - Universidad de Chile.



Survey of Graph Database Models : 25

Schema Instance
PP
I (N) I(L) I (NL) | (PP)
@ Person-Parent Hval (1) Ilval(l)  1lva(l) 1|va(l)
1| George 7|Jones 10| (1,7) 16| (12,10)
NL 2| Ana 8/stone 11/ (2,8) 17| (12,11)
@ Name-Lastname 3| Julia 9| Deville 12| (3,7) 18] (14,13)
4| James 13| (4,9) 19| (14,12)
5| David 14| (5,9) 20 (15,13)
6| Mary 15| (6,9) 21{ (15,12)
Names Lasthames

Fig. 6. Logical Data Model. The schema (on the left) uses two basic type nodes for representing
data values (N and L), and two product type nodes (NL and PP) to establish relations between
data values in a relational style. The instance (on the right) is a collection of tables, one for each
node of the schema. Note that internal nodes use pointers (names) to make reference to basic and
set data data values defined by other nodes.

assigned to each of them. These features allow to model transitive relations like
hierarchies and genealogies.

Over this structure a first order many-sorted language is defined. With this lan-
guage, a query language and integrity constraints are defined. Finally, an algebraic
language —equivalent to the logical language— is proposed, providing operations for
node and relation creation, transformation and reduction of instances, and other
operations like union, difference and projection.

LDM is a complete db-model (i.e. data structures plus query languages and
integrity constraints) that supports modeling of complex relations (e.g. hierarchies,
recursive relations). The notion of virtual records (pointers to physical records)
proves useful to avoid redundancy of data by allowing cyclicity at the schema and
instance level. Due to the fact that the model is a generalization of other models
(like the relational model), their techniques or properties can be translated into the
generalized model. A relevant example is the definition of integrity constraints.

A.2 Hypernode Model

The Hypernode db-model was described in a sequence of papers [Levene and Poulo-
vassilis 1990; Poulovassilis and Levene 1994; Levene and Loizou 1995]. A hypernode
is a directed graph whose nodes can themselves be graphs (or hypernodes), allowing
nesting of graphs. Hypernodes can be used to represent simple (flat) and complex
objects (hierarchical, composite, and cyclic) as well as mappings and records. A
key feature is its inherent ability to encapsulate information.

The hypernode model was introduced by Levene and Poulovassilis [1990], who
define the model and a declarative logic-based language structured as a sequence
of instructions (hypernode programs), used for querying and updating hypernodes.
The implementation of a storage system based on the hypernode model is presented
in [Tuv et al. 1992].

In a second version [Poulovassilis and Levene 1994], the notion of schema and
type checking is introduced via the idea of types (primitive and complex), that
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Schema Instance
PERSON_5 PERSON_3 PERSON_1

Namee— @ David
Lastnames— e Deville
Parent

Namee— —® Julia
Lastnames— e Jones
Parent

Namee— @ George
Lastnames— e Jones
Parente

PERSON

Name® g
Lastnam
Parents” @ PERSON

String

PERSON_2

PERSON_6 PERSON_4

Namee—  ~® Mary

Lastnames— e Deville g

Namee— @ James
Lastnames™ e Deville
Parente

Namee— @ Ana
Lastnames™ e Stone
Parente

Fig. 7. Hypernode Model. The schema (left) defines a person as a complex object with the
properties name and lastname of type string, and parent of type person (recursively defined).
The instance (on the right) shows the relations in the genealogy among different instances of
person.

are also represented by nested graphs (See an example in Figure 7). The model is
completed with entity and referential integrity constraints over an hypernode repos-
itory. Moreover it presents a rule-based query language called Hyperlog, which can
support both querying and browsing with derivations as well as database updates,
and is intractable in the general case.

A third version of the model [Levene and Loizou 1995] discusses a set of con-
straints (entity, referential and semantic) over hypernode databases and introduces
the concept of Hypernode functional dependency (HDF), denoted by A — B, where
A and B are sets of attributes, and A determines the value of B in all hypernodes
of the database. In addition it presents another query and update language called
HNQL, which use compounded statements to produce HNQL programs.

Summarizing, the main features of the Hypernode model are: it is based on a
nested graph structure which is simple and formal; it has the ability to model arbi-
trary complex objects in a straightforward manner; it can provide the underlying
data structure of an object-oriented data model; it can enhance the usability of a
complex objects database system via a graph-based user interface.

As drawbacks, we can mention that data redundancy can be generated by its
basic value labels, and that restrictions in the schema level are limited, for example
the specification of restrictions for missing information or multivalued relations is
not possible.

A.3  Hypergraph-Based Data Model (GROOVY)

GROOVY (Graphically Represented Object-Oriented data model with Values [Lev-
ene and Poulovassilis 1991)) is a proposal of object-oriented db-model which is for-
malized using hypergraphs, that is, a generalization of graphs where the notion of
edge is extended to hyperedge, which relates an arbitrary set of nodes [Berge 1973].
An example of hypergraph schema and instance is presented in Figure 8.

The model defines a set of structures for an object data model: value schemas,
objects over value shemas, value functional dependencies, object schemas, objects
over objects schemas and class schemas. The model shows that these structures
can be defined in terms of hypergraphs.
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Schema Instance
CHILD-PARENT

CHILD-PARENT PERSON PERSON PERSON

3
NAME  LASTNAME

PERSON

5
NAME  LASTNAME

LASTNAME

|

NAME LASTNAME
.\‘. (—0

PARENTS

Caulia)

PARENTS

PARENTS

PARENTS

PERSON PERSON PERSON

6
LASTNAME

NAME

NAME LASTNAME NAME LASTNAME

<\

PARENTS PARENTS

PARENTS

Fig. 8. GROOVY. At the schema level (left), we model an object PERSON as an hypergraph
that relates the attributes NAME, LASTNAME and PARENTS. Note the value functional depen-
dency (VDF) NAME,LASTNAME — PARENTS logically represented by the directed hyperedge
({NAME,LASTNAME} {PARENTS}). This VFD asserts that NAME and LASTNAME uniquely
determine the set of PARENTS.

A Value Schema defines the attributes (atomic or multi-valued) that contain
a class of object. Attributes in value schemas can be themselves value schemas,
allowing representation of complex objects and encapsulation of information. An
Object over a value schema is a pair O =< i,v > where 7 is the object-ID (identity)
and v is the object value (properties). A Value Functional Dependency is used
at the value schema level to assert that the value of a set of attributes uniquely
determines the value of other attribute. The determined attribute can be single-
valued or multi-valued. An Object Schema is a triple < N, F,S >, where N is a
value schema, F' is a set of value functional dependencies over N, and S is a set
of subsets of N including N itself. S represents sub-object schemas which describe
the potential sharing between objects and subjects. A Class Schema is a triple
< N, F,H > such that H C P(N) and N € H. H defines a super-class schema/sub-
class schema relationship which induces a partial ordering of class schemas, the
inheritance lattice.

There is a one-to-one correspondence between each object schema < N, F,S >
and a hypergraph, interpreting N as vertices, F' as directed hyperedges, and S as
undirected hyperedges. The same approach is applied for representing class schemas
and objects in the instance level.

A hypergraph manipulation language (HML) for querying and updating hyper-
graphs is presented. It has two operators for querying hypergraphs by identifier or
by value, and eight operators for manipulation (insertion and deletion) of hyper-
graphs and hyperedges.

The use of hypergraphs has several advantages. It introduces a single formalism
for both sub-object sharing and structural inheritance, avoiding redundancy of data
(values of common sub-objects are shared by their super-objects). Hypergraphs al-
low the definition of complex objects (using undirected hyperedges), functional
dependencies (using directed hyperedges), object-ID and (multiple) structural in-
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Abstraction Level 1 Abstraction Level 2

'PERSON_2

lastname

s Gemsovi  (pemsond

parent
PERSON_:

parent

parent parent

PERSON_6
parent

| PERSON_4

Fig. 9. Simatic-XT. The model does not define an schema. The relations Name-Lastname and
Person-Parent are represented in two abstraction levels. In the first level (the most general),
the graph contains the relations name and lastname to identify people (P1, ..., P6). In the
second level we use the abstraction of Person, to compress the attributes name and lastname and
represent only the relation parent between people.

heritance. Value functional dependences establish semantic integrity constraints
for object schemas.
The notion of hypergraphs is also used in other proposals:

—Consens and Mendelzon [1993] present a query and visualization system based
on the concept of hygraphs, a version of hypergraphs. Their model defines an
special type of edge called Blob, which relates a node with a set of nodes.

—Tompa [1989] proposes a model for hypertext where nodes represent web pages
and hyperedges represent user state and browsing.

—Watters and Shepherd [1990] use hypergraphs to model data instances (in an
existent database) and access to them. The model represents data instances as
nodes in a hypergraph, and perform operations over both hyperedges and nodes
representing data.

Finally, let us mention that GROOVY influenced the development of the Hy-
pernode model providing another approach to modeling complex objects. If we
compare both models, we can see that hypergraphs can be modeled by hypernodes
by encapsulating the contents of each hyperedge within a further hypernode. In
contrast, the multilevel nesting provided by hypernodes cannot easily be captured
by hypergraphs [Poulovassilis and Levene 1994].

A.4 Simatic-XT: A Data Model to Deal with Multi-scaled Networks

Motivated by modeling of transport networks (train, plane, water, telecommuni-
cations), Mainguenaud [1992] proposed a graph (object-oriented) db-model that
merges the concepts of graph and object oriented paradigm, focusing in the (graph)
structure of the data but not on the behavior of entities to be modeled. An example
is presented in Figure 9.
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Instance

parent

Person2 Person4 Person6

Fig. 10. GGL. Schema and instances are mixed. Packaged graph vertices (Personl, Person2, ...)
are used to encapsulate information about the graph defining a Person. Relations between these
packages are established using edges labeled with parent.

The model can be represented as a labeled directed multi-graph, defining three
basic types: Node type, Edge type, and Network type (representing a graph). Ad-
ditionally, the model introduces the notion of Master Nodes and Master Edges, to
support levels of abstraction of sub-networks and paths respectively. Each object
in the model has an object identifier (OID), that permits identification and refer-
encing. The level of abstraction is given by the nested level of Master Nodes and
Edges Nodes. The model defines the attribute in_edges to represent the set of edges
arriving in the subgraph (resp. path) that the Master Node (resp. Master Edge)
represents. In the same form out_edges represent the set of edges leaving the Master
node or Master Edge.

A sequel paper [Langou and Mainguenaud 1994] presents a set of graph operators
divided into three classes: Basic operators, managing the notion of abstraction (the
Develop and Undevelop operators); Elementary operators, managing the notion of
graph and sub-graph (Union, Concatenation, Selection and, Difference) and; high
level operators (Paths, Inclusions and Intersections).

This proposal allows simple modeling and abstraction of complex objects and
paths, and encapsulation at node and edge levels. It improves the representation
and querying of paths between nodes, and the visualization of complex nodes and
paths. At its current state, it lacks definition of integrity constraints.

A.5  Graph Database System for Genomics (GGL)

This db-model comes from the biology community and highlights the advantage of
storing Genome maps as graphs. GGL includes a graph-theoretic db-model [Graves
et al. 1995a], a genome graph language [Graves et al. 1995b], and query operators
for the model [Graves et al. 1994; Graves 1993].

The model is based on binary relationships between objects. This model extends
the basic notion of a graph by including vertices that represent edge types which al-
low to specify relations between relations (higher-order relations), and encapsulated
graphs as vertices. An example is presented in Figure 10.

A graph in GGL is basically a collection of: Simple vertices which model sim-
ple concepts and can be labeled or unlabeled; Symbols that define nodes without
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Schema Instance

parent

[Pd
m”d Ana George Julia Jame
® © © © ©

n=name In=lasthame Stone Jones Deville

Fig. 11. GOOD. In the schema, we use printable nodes N and L to represent names and lastnames
respectively and non-printable nodes Pe(rson) and CP to represent relations Name-Lastname and
Child-Parent respectively. A double arrow indicates non-functional relationship, and a simple
arrow indicates functional relationship. The instance is got by assigning values to printable nodes
and instantiating the CP and PE nodes.

outgoing edges; Fdges that connect two vertices and are labeled with a relation
name; Packaged graph vertices that represent graphs which are packaged (encap-
sulated) into vertices; and Relation type vertices which are used to represent rela-
tions between relations (higher-order relations). According to this definition, the
graph data structure consists of a directed labeled, possibly cyclic, which maintains
hierarchically-ordered graphs.

For querying data in this model, two methods are proposed: The first [Graves
et al. 1994] restrict the form of the query graph to be rooted directed acyclic graphs
with equality constraints. The strategy is based in following the paths specified by
the query-graph and returning the values that correspond to the end of the paths.
The second, is a declarative programming language called WEB [Graves 1993],
that defines queries as graphs with the same structures of the model and return the
graphs in the database which match the query-graph.

Finally, the model defines two database-independent integrity constraints: Labels
in a graph are uniquely named, and edges are composed of the labels and vertices
of the graph in which the edge occurs.

The model was designed to support the requirements to model genome data,
but also is generic enough to support complex interconnected structures. The
distinction between schema and instance is blurred. Its nesting levels increase the
complexity of modeling and processing.

A.6  Graph Object Oriented Data Model (GOOD)

The Graph Object Oriented Data Model [Gyssens et al. 1990] is a proposal oriented
mainly to develop database end-user graphical interfaces [Gyssens et al. 1990].
In GOOD, schema and instances are represented by directed labeled graphs, and
the data manipulation is expressed by graph transformations. An example of its
application is the database management system presented in [Gemis et al. 1993].
The GOOD schema and instance for the general example is presented in Figure 11.
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Schema Instance

parent

Person

name lastname

,

"Deville"
lastname

lasthname "Mary"

"Stone"

Fig. 12. GMOD. In the schema, nodes represent abstract objects (Person) and labeled edges
establish relations with primitive objects (properties name and lastname) and other abstract
objects (parent relation). For building an instance, we instantiate the schema for each person by
assigning values to oval nodes.

The model permits only two types of nodes, non-printable nodes (denoted by
squares) and printable nodes (denoted by circles). There is no distinction between
atomic, composed and set objects. There are two types of edges, functional (have a
unique value, denoted by —) and non-functional (multi-valued and denoted by —»).
A more detailed version [Gyssens et al. 1991] added node and edges for representing
set containment, object composition, generalization, and specialization.

GOOD includes a data transformation language with graphical syntax and se-
mantics. It contains four elementary graph transformation operations: addition and
deletion of nodes and edges, plus a fifth operation called abstraction, used to group
nodes on the basis of common functional or non-functional properties. The specifi-
cation of all these operations relies on the notion of pattern to describe subgraphs
in the database instance. GOOD study other issues like macros (for more suc-
cinct expression of frequent operations), computational-completeness of the query
language, and simulation of object-oriented characteristics (i.e. inheritance).

The model presented introduced several useful features. The notion of printable
and non-printable nodes is relevant for the design of graphical interfaces. It has a
simple definition of multivalued relations and allows recursive relations. It solves
in a balanced way the data redundancy problem.

A.7  Graph-oriented Object Manipulation (GMOD)

GMOD [Andries et al. 1992] is a proposal of a general model for object database
concepts focused on graph-oriented database user interfaces. Schema and instance
are labeled digraphs. An example is presented in Figure 12.

The schema graph has two class of nodes, abstract objects (rectangular shape) rep-
resenting class names and, primitive objects (oval shape) representing basic types.
Edges represent properties of abstract objects. Distinction between single-value
and multi-value properties is not considered.
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Schema Reduced Instance Graph
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Fig. 13. PaMaL. The example shows all the nodes defined in PaMaL: basic type (string), class
(Person), tuple (®), set (®) nodes for the schema level, and atomic (George, Ana, etc.), instance
(P1, P2, etc), tuple and set nodes for the instance level. Note the use of edges € to indicate
elements in a set, and the edge typ to indicate the type of class Person (these edges are changed
to val in the instance level).

The instance graph contains the data and includes instance nodes for abstract
and primitive objects (represented as in the schema level). The latter have an
additional label indicating their value (according to the primitive object domain).
The same edges defined in the schema are used to represent the properties of in-
stance objects, but their use is not necessarily required (incomplete information is
allowed). Formally, there is a graph morphism from the graph instance (without
the labels indicating value) to the schema.

The model uses graph pattern matching as a uniform object manipulation prim-
itive for querying, specification, updating, manipulation, viewing and browsing.

The model allows a simple representation of objects and relations, incomplete
information, and permits avoiding redundancy of data. The issue of property-
dependent identity and a not completely transparent notion of object-ID incorpo-
rates some complexities in the modeling.

G-Log [Paredaens et al. 1995] is a proposal of a declarative query language for
graphs, which works on the data structures defined by GMOD. Queries in G-log
are expressed by programs which consist of a number of rules and use patterns
(denoted as graphs with variables in the nodes and predicates in the edges) to
match subgraphs in the instance.

A.8 Object Oriented Pattern Matching Language (PaMal)

PaMalL is a graphical data manipulation language that uses patterns (represented
as graphs) to specify the parts of the instance on which the operation has to be
executed. Gemis and Paredaens [1993] proposed this pattern-based query language
based on a graphical object-oriented db-model as an extension of GOOD by an ex-
plicit representation of tuples and sets. An example of PaMaL schema and instance
is presented in Figure 13.
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Schema Instance
(g
name lastname parent parent \ "Ana"
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parent] child parent Stone

; ; Iastnam
E Parenﬂ el "James"
‘ Personw ‘ Person ‘
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Fig. 14. GOAL: The schema presented in the example shows the use of the object node Person
with properties Name and Lastname. The association node Parent and the double headed edges
parent and child allow to express the relation Person-Parent. At the instance level, we assign
values to value nodes (string) and create instances for object and association nodes. Note that
nodes with same value were merged (e.g. Deville).

The schema defines four types of Nodes: () class nodes (upper-case labels), O
basic-type nodes (lower-case labels), ® tuple nodes, and ® set nodes. There are
four kinds of edges, indicating attribute of a tuple, type of the elements in a set
(labeled with €), type of the classes (labeled with typ), and hierarchical relationship
(labeled with isa).

An instance graph may contain atomic, instance, tuple and set nodes (they are
determined by the schema). Atomic objects are labeled with values from their
domains and instance objects are labeled with object-ID’s. tuple and set objects
are identified by their outgoing edges, motivating the notion of reduced instance
graph to merge nodes that represent the same set or tuple. To refer to the node
that describes the properties (or content) of an object, an edge labeled val is used
and represents the edge typ in the schema.

PaMaL presents operators for addition, deletion (of nodes and edges) and an
special operation that reduces instance graphs. It incorporates loop, procedure and
program constructs that makes it a computationally complete language. Among
the highlights of the model are the explicit definition of sets and tuples, the multiple
inheritance, and the use of graphics to describe queries.

A.9 Graph-based Object and Association Language (GOAL)

Motivated by the introduction of more complex db-models like object-oriented
ones, and directed to offer the user a consistent graphical interface, Hidders and
Paredaens [1993] proposed a graph based db-model for describing schemas and in-
stances of object databases. GOAL extends the model of GOOD by adding the
concept of association nodes (similar to the entity relationship model). The main
difference between associations and objects is that the identity of objects is inde-
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Fig. 15. GDM. In the schema each entity Person (object node represented as a square) has assigned
the attributes name and lastname (basic value nodes represented round and labeled str). We use
the composite-value node PC to establish the relationship Parent-Child. Note the redundancy
introduced by the node PC. The instance is built by instantiating the schema for each person.

pendent of their properties, whereas associations are considered identical if they
have the same properties. An example is presented in Figure 14.

Schema and instances in GOAL are represented as finite directed labeled graphs.
A schema allows to define three types of nodes: object nodes that represent objects
(rectangular nodes); value nodes that represent printable values such as string, in-
tegers or booleans (round nodes) and; association nodes that represent associations
or relations among more than two nodes (diamond shape nodes). Objects and as-
sociations may have properties that are represented by edges. The model allows
representation of functional properties (single headed edges) and multi-valued prop-
erties (double headed edges), as well as ISA relations (double unlabeled arrows).
An instance in GOAL assigns values to value nodes and creates instances for object
and association nodes.

GOAL introduces the notion of consistent schema to enforce that objects only
belong to the class they are labeled with and its super-classes. In addition GOAL
presents a graph data manipulation language with operations for addition and dele-
tion based on pattern matching. The addition (deletion) operation adds (deletes)
nodes and/or edges at the instance level. A finite sequence of additions and dele-
tions is called a transformation.

There are several novelties introduced by this model. Association nodes allow
simple definition of multi-attribute and multi-valued relations. In contrast to the
Entity Relationship model, GOAL supports relations between associations. Prop-
erties are optional, therefore it is possible to model incomplete information. Ad-
ditionally, GOAL defines restrictions that introduce notions of consistent schema
and weak instance.

A.10 Graph Data Model (GDM)

GDM [Hidders 2002; 2001] is a graph-based db-model based on GOOD, that adds
explicit complex values, inheritance and n-ary symmetric relationships. Schema
and instances in GDM are described by labeled graphs called instance graph and
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schema graph respectively. An example is presented in Figure 15.

A schema graph contains nodes that represent classes and edges labeled with
attribute names indicating that entities in that class may have that attribute. Three
types of class nodes are allowed: object, composite-value and, basic value. An edge
denoted by a double-line arrow defines an ISA relation between class nodes.

In an instance graph, nodes represent entities and edges represent attributes of
these entities. We can have object nodes (depicted squared), composite-value nodes
(round empty) and basic value nodes (round labeled with a basic-type name). An
object node is labeled with zero o more class names indicating their membership to
certain classes. If several edges with the same label leave a node, then it is a single
set-valued attribute.

GDM introduces the concept of well-formed graph defining four constraints: (I-
BVA) no edge leaves from a basic-value node; (I-BVT) each basic value node has
assigned a real value that is in the domain of the basic-type of the node; (I-NS) for
each class-free node n there is a path that ends in n and starts in a class-labeled
node; and (I-REA) composite-value nodes have either exactly one incoming edge
or are labeled with exactly one class name, but not both. In addition the model
considers the notion of consistency defining extension relations which are many-
to-many relations between the nodes in the data graph and nodes in the schema
graph, indicating correspondence between entities and classes.

The proposal includes a graph-based update language called GUL, that is based
on pattern matching. GUL permits addition and deletion operations, plus a reduc-
tion operation that reduces well-formed data graphs to instance graphs by merging
similar basic-value nodes and similar composite-value nodes.

The GDM model presents the following benefits. The independence of the defini-
tion of the notions of schema and instance permits that instances can exist without
a schema, allowing representation of semi-structured data. It permits the explicit
representation of complex values, inheritance (using ISA edges) and definition of
n-ary symmetric relationships. The composite-value nodes allow simple definition
of multi-attribute and multi-valued relations. Finally, let us remark that this model
introduces notions of consistency and well-formed graphs.

A.11 Gram: A Graph Data Model and Query Language

Motivated by hypertext querying, Amann and Scholl [1992] introduce Gram, a
graph db-model where data is organized as a graph. A schema in Gram is a directed
labeled multigraph, where each node is labeled with a symbol called a type, which
has associated a domain of values. In the same way, each edge has assigned a label
representing a relation between types (see example in Figure 16). A feature of
Gram is the use of regular expressions for explicit definition of paths called walks.
An alternating sequence of nodes and edges represent an walk, which combined
with other walks conforms other special objects called hyperwalks.

For querying the model (particularly path-like queries), an algebraic language
based on regular expressions is proposed. For this purpose a hyperwalk algebra
is defined, which presents unary operations (projection, selection, renaming) and
binary operations (join, concatenation, set operations), all closed under the set of
hyperwalks.
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Fig. 16. Gram. At the schema level we use generalized names for definition of entities and
relations. At the instance level, we create instance labels (e.g. PERSON_1) to represent entities,
and use the edges (defined in the schema) to express relations between data and entities.

A.12 Related Data Models

Besides the models reviewed, there are other proposals that present graph-like
features, although not explicitly designed to model the structure and connectivity
of the information. In this section we will describe the most relevant of these.

A.12.1 GraphDB. Giiting [1994] proposes an explicit model named GraphDB,
which allows simple modeling of graphs in an object oriented environment. The
model permits an explicit representation of graphs by defining object classes whose
objects can be viewed as nodes, edges and explicitly stored paths of a graph (which
is the whole database instance). A database in GraphDB is a collection of object
classes partitioned into three kinds of classes: simple, link and path classes. Also
there are data types, object types and tuple types. There are four types of operators
to query GraphDB data: Derive statements, Rewrite operations, Union operator,
and Graph operations (Shortest path search).

The idea of modeling graphs using object oriented concepts is presented in other
proposals, generically called object-oriented graph models. A typical example is
GOQL [Sheng et al. 1999], a proposal of graph query language for modeling and
querying of multimedia application graphs (represented as DAGs). This proposal
defines a object oriented db-model (similar to GraphDB) that defines four types of
objects: node, edge, path and graph. GOQL uses an SQL-like syntax for construc-
tion, querying and manipulation of such objects.

A.12.2  Database Graph Views. A database graph view [Gutiérrez et al. 1994]
provides a functional definition of graphs over data that can be stored in either
relational, object oriented or file systems. In other words, the model proposes the
definition of personalized graph views of the data with management and querying
purposes, and independent of its implementation.

In brief the model defines underlying graphs over the database and proposes a set
of primitives called derivation operators for definition and querying of graph views.
Unary derivation operators allow selection of nodes and edges. Binary derivation
operators are used to build new graph views resulting from the union, intersection

Technical Report TR/DCC-2005-10 - Computer Science Department - Universidad de Chile.



Survey of Graph Database Models : 37

OEM Syntax OEM Graph
{ person : &p1 { name : "George" ,
lastname : "Jones" }
person : &p2 { name : "Ana" ,
lastname : "Stone" }
person : &p3 { name : "Julia",
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parent : &p4 }
person : &p6 { name = "Mary" ,
lastname : "Deville" ,
parent : &p3,
parent: &p4} }

Fig. 17. Object Exchange Model (OEM). Schema and instance are mixed. The data is modeled
beginning in a root node &pp, with children person nodes, each of them identified by an Object-
ID (e.g. &p2). These nodes have children that contain data (name and lastname) or references
to other nodes (parent). Referencing permits to establish relations between distinct hierarchical
levels. Note the tree structure obtained if one forgets the pointers to OIDs, a characteristic of
semistructured data.

or difference of two graph views.

A12.3 Object Exchange Model (OEM). OEM [Papakonstantinou et al. 1995]
is a semistructured db-model that allows simple and flexible modeling of complex
features of a source using the ideas of nesting and object identity from object
oriented db-models (features such as classes, methods and inheritance are omitted).
The main motivation of OEM was the information integration problem. Therefore
it defines a syntax that is well suited for information exchange in heterogeneous
dynamic environments. The data in OEM can be represented as a rooted directed
connected graph. An example of OEM graph and syntax is presented in Figure 17.

Data represented in OEM can be thought of as a graph with Object-IDs repre-
senting node-labels and OEM-labels representing edge-labels. Atomic objects are
leaf nodes where the OEM-value is the node value. The main feature of OEM data
is that it is self-describing, in the sense that it can be parsed without recurring
to an external schema and uses human understandable labels that add semantic
information about objects. Due to the fact that there is no notion of schema or ob-
ject class (although each object defines its own schema), OEM offers the flexibility
needed in heterogeneous dynamic environments.

A.12.4  eXtended Markup Language (XML). The XML [Bray et al. | model did
not originate in the database community. It was introduced as an standard for
exchanging information between Web applications. XML allows annotating data
with information about its meaning rather than just its presentation [Vianu 2003].
From an abstract point of view, XML data are labeled ordered trees (with labels
on nodes), where internal nodes define the structure and leaves the data (schema
and data are mixed).
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Fig. 18. RDF. Schema and instance are mixed together. In the example, the edges labeled type
disconnect the instance from the schema. The instance is built by the subgraphs obtained by
instantiating the nodes of the schema, and establishing the corresponding parent edges between
these subgraphs.

Compared to graph data db-models, XML has a ordered-tree-like structure, which
is a restricted type of graph. Nevertheless, XML additionally provides a referenc-
ing mechanism among elements that allows simulating arbitrary graphs. In this
sense XML can simulate semistructured data. In XML, the information about the
hierarchical structure of the data is part of the data (in other words XML is self-
describing); in contrast, in graph db-models this information is described by the
schema graph in a more flexible fashion using relations between entities. From this
point of view, graph db-models use connections to explicitly represent generaliza-
tion, compositions, hierarchy, classification, and any/other type of relations.

A.12.5 Resource Description Framework (RDF). RDF [Klyne and Carroll 2004]
is a recommendation of the W3C designed originally to represent metadata. The
broad goal of RDF is to define a mechanism for describing resources that makes
no assumptions about a particular application domain, nor defines (a priori) the
semantics of any application domain.

One of the main advantages (features) of the RDF model is its ability to intercon-
nect resources in an extensible way. Thus, RDF models information with graph-like
structure, where basic notions of graph theory like node, edge, path, neighborhood,
connectivity, distance, degree, etc., play a central role.

An atomic RDF expression is a triple consisting of a subject (the resource being
described), a predicate (the property) and an object (the property value). Each
triple represents a statement of a relationship between the things that it links. A
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general RDF expression is a set of such triples, which can be intuitively considered
as a labeled graph, called an RDF Graph [Klyne and Carroll 2004], which formally
is not a graph [Hayes and Gutierrez 2004] (see example in Figure 18).

Currently there is research work on storing information expressed in RDF, but
none of these works define a graph db-model or even a db-model. In addition several
languages for querying RDF data has been proposed and implemented, which follow
the lines of database query languages like SQL, OQL, and XPath. A discussion of
aspects related to querying RDF from a graph database perspective is presented
in [Angles and Gutierrez 2005].

SPARQL [Prud’hommeaux and Seaborne 2005] is a proposal of Protocol and
Query Language designed for easy access to RDF stores. It defines a query language
with a SQL-like style, where a simple query is based on query patterns, and query
processing consists of binding of variables to generate pattern solutions (graph
pattern matching).
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